Skip to main content

Quantifier Guided Aggregation of Fuzzy Criteria with Associated Importances

  • Chapter
Aggregation Operators

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 97))

Abstract

The evaluation of quantified sentences of the form “Q of D are A” is recognized as a suitable tool for quantifier guided aggregation of fuzzy criteria with associated importances. In this paper we discuss the properties any good evaluation method should verify. We study a new method to evaluate quantified sentences. Our new method is shown to be an extension of the quantified aggregation via the Choquet integral when all the criteria are equally important and a monotone increasing quantifier is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. E. Bellman and L.A. Zadeh. Decision-making in a fuzzy environment. Manage. Sci., 17 (4): 141–164, 1970.

    Article  MathSciNet  Google Scholar 

  2. P. Bosc and L. Lietard. Monotonic quantified statements and fuzzy integrals. In Proc. NAFIPS/IFIS/NASA Conference, pages 8–12, 1994.

    Google Scholar 

  3. P. Bosc and L. Lietard. On the comparison of the Sugeno and the Choquet fuzzy integrals for the evaluation of quantified statements. In Proc. of EUFIT’95, pages 709–716, 1995.

    Google Scholar 

  4. P. Bosc and O. Pivert. Fuzzy querying in conventional databases. In L. A. Zadeh and J. Kacprzyk, editors, Fuzzy Logic for the Management of Uncertainty, pages 645–671. Wiley and Sons, 1992.

    Google Scholar 

  5. J. C. Cubero, J. M. Medina, O. Pons, and M. A. Vila. Using OWA operator in flexible query processing. In R. R. Yager and J. Kacprzyk, editors, The Ordered Weighted Averaging Operators: Theory, Methodology and Applications, pages 258–274. Kluwer Academic Publishers, 1997.

    Google Scholar 

  6. M. Delgado, M. J. Martin-Bautista, D. Sanchez, and M. A. Vila. A probabilistic definition of a nonconvex fuzzy cardinality. Fuzzy Sets and Systems, To appear, 2000.

    Google Scholar 

  7. M. Delgado, D. Sanchez, and M. A. Vila. Fuzzy cardinality based evaluation of quantified sentences. International Journal of Approximate Reasoning, 23: 23–66, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Kacprzyk, J. Fedrizzi, and M. Nurmi. Group decision making with fuzzy majorities represented by linguistic quantifiers. In J. L. Verdegay and M. Delgado, editors, Approximate Reasoning Tools for Artificial Intelligence, pages 126–145. Verlag TUV Rheinland, 1990.

    Google Scholar 

  9. J. Kacprzyk and C. Iwanski. Inductive learning from incomplete and imprecise examples. In B. Bouchon-Meunier, R. Yager, and L. A. Zadeh, editors, Uncertainty in Knowledge Bases, volume 521 of Lecture Notes in Computer Science, pages 424–430. Springer-Verlag, 1991.

    Google Scholar 

  10. J. Kacprzyk and R. R. Yager. Softer optimization and control models via fuzzy linguistic quantifiers. Information Sciences, 34: 157–178, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Kacprzyk and R. R. Yager. Using fuzzy logic with linguistic quantifiers in multiobjective decision making optimization: A step towards more ‘human-consistent’ models. In R. Slowinski and J. Teghem, editors, Stochastic Vs. Fuzzy Approaches to Multiobjective Mathematical Programming Under Uncertainty, pages 331–352. Kluwer Publishing, 1990.

    Chapter  Google Scholar 

  12. Y. Liu and E. Kerre. An overview of fuzzy quantifiers part I (interpretations) and II (reasoning and applications). Fuzzy Sets and Systems 95, pp. 1–21, 135–146, 1998.

    MathSciNet  Google Scholar 

  13. D. Rasmussen. SummarySQL - a general purpose fuzzy query language. Datalogiske Skrifter,75, 1997. Universidad de Roskilde.

    Google Scholar 

  14. D. Sanchez. Adquisición de Relaciones Entre Atributos En Bases de Datos Relacionales (in spanish). PhD thesis, Department of Computer Science and Artificial Intelligence, University of Granada, December 1999.

    Google Scholar 

  15. R. R. Yager. Quantifiers in the formulation of multiple objective decision functions. Information Sciences, 31: 197–139, 1983.

    Google Scholar 

  16. R. R. Yager. General multiple-objective decision functions and linguistically quantified statements. International Journal of Man-Machine Studies, 21: 389–400, 1984.

    Article  MATH  Google Scholar 

  17. R. R. Yager. On ordered weighted averaging aggregation operators in multi-criteria decisionmaking. IEEE Transactions on System, Man and Cybernetics, 18 (1): 183–190, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. R. Yager. Connectives and quantifiers in fuzzy sets. Fuzzy Sets and Systems, 40: 39–76, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. R. Yager. Fuzzy quotient operators for fuzzy relational data bases. In Proc. of IFES’g1, pages 289–296, 1991.

    Google Scholar 

  20. R. R. Yager. Quantifier guided aggregation using OWA operators. International Journal of Intelligent Systems, 11: 49–73, 1996.

    Article  Google Scholar 

  21. L. A. Zadeh. A computational approach to fuzzy quantifiers in natural languages. Computing and Mathematics with Applications, 9 (1): 149–184, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  22. L. A. Zadeh. PRUF–a meaning representation language for natural languages. International Journal of Man-Machine Studies, 10: 395–460, 1978.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Physica-Verlag Heidelberg

About this chapter

Cite this chapter

Blanco, I., Delgado, M., Martín-Bautista, M.J., Sánchez, D., Vila, M.A. (2002). Quantifier Guided Aggregation of Fuzzy Criteria with Associated Importances. In: Calvo, T., Mayor, G., Mesiar, R. (eds) Aggregation Operators. Studies in Fuzziness and Soft Computing, vol 97. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1787-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1787-4_10

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-00319-0

  • Online ISBN: 978-3-7908-1787-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics