Summary
The use of robust procedures in regression model estimation identifies outlier data that can inform on specific subpopulations. The aim of this study is to analyse the problem of first year dropouts at the University of Florence. A set of administrative data, collected at the moment of enrolment, combined with the information gathered through a specific survey of the students enrolled in the 2001–2002 academic year at the same athenaeum, was used for the purpose. In order to identify the most important variables affecting the students’ dropout, the data were first fitted with generalized linear models estimated with classical methods. The same models were then estimated with robust methods that allowed the detection of groups of outliers. These in turn were analysed to determine the personal or contextual characteristics. These results may be relevant for the implementation of academic policy changes.
Keywords
- Dropout rate
- Outliers
- Forward search method
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
AGRESTI A. (2002) Categorical Data Analysis, 2 nd Ed., Wiley, New York.
ATKINSON A. C. (1985) Plots, Transformations and Regression, Oxford University Press, Oxford.
ATKINSON A.C., RIANI M. (2000) Robust Diagnostic Regression Analysis, Springer, New York.
BERTACCINI B. (2000) Misure di efficacia esterna dell’istruzione universitaria: indicatori statistici e analisi robusta (B.A. dissertation), University of Florence.
BINI M. (1999) Valutazione della Efficacia dell’Istruzione Universitaria rispetto al Mercato del Lavoro. Rdr 03/99. Osservatorio per la Valutazione del Sistema Universitario-Ministero dell’Università e della Ricerca Scientifica e Tecnologica.
CHATTERJEE S., HADI A. S. (1988) Sensitivity Analysis in Linear Regression, Wiley, New York.
CHIANDOTTO B., BERTACCINI B. (2003) Profilo e sbocchi occupazionali dei laureati e diplomati dell’Ateneo fiorentino nell’anno 1999, University of Florence.
COOK R. D., WEISBERG S. (1982) Residual and Influence in Regression, Chapman and Hall, London.
DONOHO D.L., HUBER P.J. (1983) The notation of breakdown point, In: BICKEL P.J., DOKSUM K., HODGES J.L. Jr (eds) A festschrift for Erich Lehmann, Wadsworth Inc., Belmont, CA: 157–184.
ROUSSEEUW P.J. (1984) Least Median of Square Regression, Journal of the American Statistical Association, 85: 633–639.
ROUSSEEUW P.J., LEROY A.M. (1987) Robust Regression and Outlier Detection, Wiley, New York.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Physica-Verlag Heidelberg
About this chapter
Cite this chapter
Bini, M., Bertaccini, B. (2007). Evaluating the University Educational Process. A Robust Approach to the Drop-out Problem. In: Fabbris, L. (eds) Effectiveness of University Education in Italy. Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-1751-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-7908-1751-5_5
Publisher Name: Physica-Verlag HD
Print ISBN: 978-3-7908-1749-2
Online ISBN: 978-3-7908-1751-5
eBook Packages: Business and EconomicsEconomics and Finance (R0)
