A Warning System for Stromboli Volcano Based on Statistical Analysis

  • Giuseppe Nunnari
  • Giuseppe Puglisi
  • Alessandro Spata
Part of the Pageoph Topical Volumes book series (PTV)


In this paper we describe a warning system based on statistical analysis for the purpose of monitoring ground deformation at the Sciara del Fuoco (Stromboli Volcano, Sicily). After a statistical analysis of ground deformation time-series measured at Stromboli by the monitoring system known as THEODOROS (THEOdolite and Distancemeter Robot Observatory of Stromboli), the paper describes the solution adopted for implementing the warning system. A robust statistical index has been defined in order to evaluate the movements of the area. A fuzzy approach has been proposed to evaluate an AI (Alarm Intensity) index which indicates the level of hazard of the Sciara del Fuoco sliding.

Key words

Stromboli volcano warning system fuzzy logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andel, J., On critical values of Siegel’s test. In Trans. of the Twelfth Prague Conference (P. Lachout and J. A. Visek, Prague 1994), UTIA AV CR and MFF UK, pp 13–15.Google Scholar
  2. DI Bello, G., Filizzola, C., Lacava, T., Marchese, F., Pergola, N., Pietrapertosa, C., Piscitelli, S., Scaffidi, I., AND Tramutoli, V. (2004), Robust satellite techniques for volcanic and seismic hazards monitoring, Annals of Geophysics 47,1, 49–64.Google Scholar
  3. Fisher, R. A., Test of Significance in Harmonic Analysis, Proc. Roy. Soc. (London, 1929), pp. 54–59.Google Scholar
  4. Fortuna, L., Rizzotto, G., Lavorgna, M., Nunnari, G., Xibilia, M.G., and Caponetto, R., Soft Computing. New Trends and Application (Springer, 2001).Google Scholar
  5. Leica and Geodetics Inc., Software GeoMos User Manual (2002).Google Scholar
  6. Marradi, A., L’analisi monovariata (Franco Angeli Editore, Milano, 1993).Google Scholar
  7. Nunnari, G., Puglisi, G., and Gargaun F. (2006), Implementation of a warning system for Stromboli Volcano, In Applied Soft Computing Techniques: The Challenge of Complexity, 9th Online World Congress (Berlin, Springer-Verlag) pp. 209–218.Google Scholar
  8. Percival, D.B. and Walden, A.T. Spectral Analysis for Physical Applications (Cambridge University Press, Cambridge, 1993).Google Scholar
  9. Puglisi, G., Bonaccorso, A., Mattia, M., Aloisi, M., Bonforte, A., Campisi, O., Cantarero, M., Falzone G., Puglisi B., and Rossi M. (2004), New integrated geodetic monitoring system at Stromboli Volcano (Italy), Engin. Geology 79, 13–31.CrossRefGoogle Scholar
  10. Schuster, A., (1898), On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena, J. Geophys. Res., 3,(1), 13–41.CrossRefGoogle Scholar
  11. Siegel, A. F., (1980), Testing for periodicity in a time series, J. Am. Statistical Assoc. 75, 345–348.CrossRefGoogle Scholar
  12. Tramutoli, V. (1998), Robust AVHRR Techniques (RAT) for environmental monitoring: theory and applications, In Earth Surface Remote Sensing II (G. Cecchi and E. Zilioli eds.), Proc. SPIE, 3496, pp. 101–113.Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 2008

Authors and Affiliations

  • Giuseppe Nunnari
    • 1
  • Giuseppe Puglisi
    • 2
  • Alessandro Spata
    • 1
  1. 1.Dipartimento di Ingegneria Elettrica Elettronica e dei SistemiUniversità degli studi di CataniaCataniaItaly
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaSezione di CataniaCataniaItaly

Personalised recommendations