Skip to main content

Time Evolution of Deformation Using Time Series of Differential Interferograms: Application to La Palma Island (Canary Islands)

  • Chapter
  • 491 Accesses

Part of the Pageoph Topical Volumes book series (PTV)

Abstract

Differential interferometry is a very powerful tool for detecting changes in the Earth’s crust where coherence conditions are good, but is difficult to employ in some volcanic areas due to dense vegetation. We apply two differential InSAR methods using the time series associated with the interferograms to perform a phase analysis on a data set for La Palma island (Canary Islands) from the ERS-1 and ERS-2 European Space Agency (ESA) satellites for the time period 1992 to 2000. Both methods involve choosing a master image from the database and creating a series of interferograms with respect to this image. The “Coherent Pixel Time Series” (CPTS) technique chooses pixels with good average coherence, aligns the unwrapped interferograms with a stable area and then performs an inversion to calculate the linear velocity to quantify the deformation. The Coherent Target Modeling (CTM) method calculates the temporal coherence of each pixel to identify stable targets and then determines the best velocity for each pixel by using a linear fit that maximizes the temporal coherence. Using these two methods we have been able to detect deformation on La Palma Island that has been previously undetectable by conventional InSAR methods. There is a roughly circular region on the Southern part of the island that is actively deforming at ∽ -4 to -8 mm/yr. This region is located near the Teneguia valcano, the host of the last known eruption on La Palma in 1971. A thorough investigation of the possible sources for this deformation revealed that it was most likely created by a subsurface thermal source.

Key words

  • Time series
  • La Palma
  • InSAR
  • ground deformation modeling
  • differential interferograms
  • permanent scatterers

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-7643-9964-1_5
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-7643-9964-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abad Fernández, J. and Sánchez Guzmán, J. (1985), Geothermal energy in the Spanish energy plan: Present status of the most advanced projects, Geothermics 14, 379–384.

    CrossRef  Google Scholar 

  • Ancoechea, E., Hernán, F., Cendrero, A., Cantagrel, J.M., Fúster, J. M., Ibarrola, E., and Coello, J. (1994), Constructive and destructive episodes in the building of a young Oceanic Island, La Palma, Canary Islands, and the genesis of the Caldera de Taburiente, J. Volcanol. Geotherm. Res. 60, 243–262.

    CrossRef  Google Scholar 

  • Anguita, F. and Hernán, F. (1975), A propagating fracture model versus a hotspot origin for the Canary Islands, Earth Planet. Sci. Lett. 27, 1119.

    CrossRef  Google Scholar 

  • Anguita, F. and Hernán, F. (2000), The Canary Islands origin: A unifying model, J. Volcanol. Geotherm. Res. 103, 1–26.

    CrossRef  Google Scholar 

  • Araña, V. and Ortíz, R., The Canary Islands: Tectonics, magmatism and geodynamic framework. In Magmatism in Extensional Structural Settings: The Phanerozoic African Plate (eds. Kampunzu, A. B. and Lubala, R. T.) (Springer-Verlag, Berlin, 1991), pp 209–249.

    Google Scholar 

  • Atlantis Scientific Inc., EV-InSAR Version 3.1 User’s Guide (Atlantis Scientific Inc., Nepean, Ontario, 2004).

    Google Scholar 

  • Banda, E., Dañobeitia, J. J., Suriñach, E., and Ansorge, J. (1981), Features of crustal structure under the Canary Islands, Earth Planet. Sci. Lett. 55, 11–24.

    CrossRef  Google Scholar 

  • Bravo, T. (1964), Estudio Geológico y Petrográfico de la Isla de La Gomera, Estudios Geológicos 20, 93–108.

    Google Scholar 

  • Carracedo, J. C., Day, S., Guillou, H., Rodríguez, E., Canas, J. A., and Pérez, F. J. (1998), Hotspot volcanism close to a passive continental margin, Geological Magazine 135, 591–604.

    CrossRef  Google Scholar 

  • Carracedo, J. C., Rodríguez-Badiola, E., Guillou, H., Nuez, J. D. L., and Pérez-torrado, F. J. (2001), Geology and volcanology of La Palma and El Hierro, Western Canaries, Estudios Geológicos 57, 175–273.

    CrossRef  Google Scholar 

  • Chen, G. W. (2001), Statistical-Cost Network-Flow Approaches to Two-Dimensional Phase Unwrapping for Radar Interferometry, Ph.D. Thesis, Stanford University.

    Google Scholar 

  • Dañobeitia, J. J. and Canales, J. P. (2000), Magmatic underplating in the Canary Archipelago, J. Volcanol. Geotherm. Res. 103, 27–41.

    CrossRef  Google Scholar 

  • Day, S., Carracedo, J. C., Guillou, H., and Gravestock, P. (1999), Recent structural evolution of the Cumbre Vieja Volcano La Palma, Canary Islands: Volcanic rift zone reconfiguration as a precursor to volcano flank instability?, J. Volcanol. Geotherm. Res. 94, 135–167.

    CrossRef  Google Scholar 

  • DE LA Nuez, J. (1984), El Complejo Intrusivo Subvolcánico de la Caldera de Taburiente (La Palma, Canarias), Ph.D. Thesis, Universidad Complutense de Madrid.

    Google Scholar 

  • Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Werner, J. U. M., Oskin, M., Burbank, D., and Alsdorf, D. (2007), The Shuttle Radar Topography Mission, Rev. Geophys. 45, doi:10.1029/2005RG000183.

    Google Scholar 

  • Fernández, C., DE LA Nuez, J., Casillas, R., AND García-Navarro, E. (2002), Stress fields associated with the growth of a large shield volcano (La Palma, Canary Islands), Tectonics 21, 41–57.

    CrossRef  Google Scholar 

  • Ferretti, A., Prati, C., and Rocca, F. (2000), Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Trans. Geosci. Remote Sens. 38, 2202–2212.

    CrossRef  Google Scholar 

  • Ferretti, A., Prati, C., and Rocca, F. (2001), Permanent scatterers in SAR interferometry, IEEE Trans. Geosci. Remote Sens. 39, 8–20.

    CrossRef  Google Scholar 

  • Fúster, J. M., Araña, V., Brändle, J. L., Navarro, J. M., Alonso, V., and Aparicio, A., Geología y Volcanología de Las Islas Canarias: Tenerife (Instituto Lucas Mallada, CSIC, 1968).

    Google Scholar 

  • García herrera, R., Gallego puyol, D., Hernández martín, E., Gimeno presa, L., and Ribera rodríguez, P. (2001), Influence of the North Atlantic oscillation on the Canary Islands precipitation, J. Climate 14, 3889–3903.

    CrossRef  Google Scholar 

  • Guillou, H., Carracedo, J. C., and Day, S. (1998), Dating of the upper Pleistocene-Holocene volcanic activity of La Palma using the unspiked K-Ar technique, J. Volcanol. Geotherm. Res. 86, 137–149.

    CrossRef  Google Scholar 

  • Hanssen, R. F., Radar Interferometry: Data Interpretation and Error Analysis (Kluwer Academic Publishers, Dordrecht, 2001).

    Google Scholar 

  • Hildenbrand, A., Gillot, P.-Y., Soler, V., and Lahitte, P. (2003), Evidence for a persistent uplifting of La Palma (Canary Islands), inferred from morphological and radiometric data, Earth Planet. Sci. Lett. 210, 277–289.

    CrossRef  Google Scholar 

  • Hooper, A. (2006), Persistent Scatterer Radar Interferometry for Crustal Deformation Studies and Modeling of Volcanic Deformation, Ph.D. Thesis, Stanford University.

    Google Scholar 

  • Hooper, A., Zebker, H., Segall, P., and Kampes, B. (2004), A new method For measuring deformation on volcanoes and other non-urban areas using InSAR persistent scatterers, Geophys. Res. Lett. 31, L23611, doi:10.1029/2004GL021737.

    CrossRef  Google Scholar 

  • Kampes, B. M., Radar Interferometry: Persistent Scatterer Technique, Remote Sensing and Digital Image Processing Series (Springer Ed., Dortrecht, The Netherlands, 2006).

    Google Scholar 

  • Kampes, B. M., Hanssen, R. F., and Perski, Z., Radar Interferometry with Public Domain Tools. In Proc. FRINGE 2003 Workshop, Frascati, Italy (2003).

    Google Scholar 

  • Klügel, A., Hansteen, T. H., and Galipp, K. (2005), Magma storage and underplating beneath Cumbre Vieja Volcano, La Palma (Canary Islands), Earth Planet. Sci. Lett. 236, 211–226.

    CrossRef  Google Scholar 

  • Massonnet, D. and Feigl, K. L. (1998), Radar interferometry and its application to changes in the Earth’s surface, Rev. Geophys. 36, 441–500.

    CrossRef  Google Scholar 

  • Massonnet, D. and Sigmundsson, F., Remote sensing of volcano deformation by radar interferometry from Various Satellites. In Remote Sensing of Active Volcanism (eds Mouginis-Mark, P. J., Crisp, J. A., and Fink, J. H.), Geophysical Monographs 116 (Am. Geophys. Union, Washington, DC, 2000), pp 207–221.

    Google Scholar 

  • Miranda, N., Rosich, B., Santella, C., and Grion, M., Review of the impact of ERS-2 piloting modes on the SAR Doppler stability. In Proc. 2004 Envisat & ERS Symp., 6-10 September 2004, Salzburg, Austria (ESA SP-572, April 2005) (2004).

    Google Scholar 

  • Moss, J., Mcguire, W., and Page, D. (1999), Ground deformation monitoring of a potential landslide at La Palma, Canary Islands, J. Volcanol. Geotherm. Res. 94, 251–265.

    CrossRef  Google Scholar 

  • Navarro, J. M. and Coello, J. J., Mapa Geológico del Parque Nacional de la Caldera de Taburiente (ICONA. Ministerio de Agricultura, Pesca y Alimentación, 1993).

    Google Scholar 

  • Pérez, N. M., Wakita, H., Nakai, S., Sano, Y., and Williams, S. N. (1994), 3 He/4He isotopic ratios in volcanic hydrothermal discharges from the Canary Islands, Spain: Implications on the origin of the volcanic activity, Mineralogical Magazine 58A, 709–710.

    CrossRef  Google Scholar 

  • Rodriguez, E. and Martin, J. M. (1992), Theory and design of interferometric synthetic aperture radars, IEE Proceedings-F 139, 147–159.

    Google Scholar 

  • Romero, C., Actividad Volcánica Histórica en Las Islas Canarias. In Curso Internacional de Volcanología y Geofísica Volcánica (Excmo. Cabildo Insular de Lanzarote, Lanzarote, Islas Canarias, 2000), pp 115–128.

    Google Scholar 

  • Scharroo, R. and Visser, P. (1998), Precise orbit determination and gravity field improvement for the ERS satellites, J. Geophys. Res. 103, 8113–8127.

    CrossRef  Google Scholar 

  • Skolnik, M., Radar Handbook (McGraw-Hill Inc., 1990).

    Google Scholar 

  • Zebker, H. A. and Villasenor, J. (1992), Decorrelation in Interferometric Radar Echoes, IEEE Transactions on Geoscience and Remote Sensing 30, 950–959.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Perlock, P.A., González, P.J., Tiampo, K.F., Rodríguez-Velasco, G., Samsonov, S., Fernández, J. (2008). Time Evolution of Deformation Using Time Series of Differential Interferograms: Application to La Palma Island (Canary Islands). In: Camacho, A.G., Díaz, J.I., Fernändez, J. (eds) Earth Sciences and Mathematics. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9964-1_5

Download citation