Potential Symmetry Properties of a Family of Equations Occuring in Ice Sheet Dynamics

  • J. I. Díaz
  • R. J. Wiltshire
Chapter
Part of the Pageoph Topical Volumes book series (PTV)

Abstract

In this paper we derive some similarity solutions of a nonlinear equation associated with a free boundary problem arising in the shallow-water approximation in glaciology. In addition we present a classical potential symmetry analysis of this second-order nonlinear degenerate parabolic equation related to non- Newtonian ice sheet dynamics in the isothermal case. After obtaining a general result connecting the thickness function of the ice sheet and the solution of the nonlinear equation (without any unilateral formulation), a particular example of a similarity solution to a problem formulated with Cauchy boundary conditions is described. This allows us to obtain several qualitative properties on the free moving boundary in the presence of an accumulation-ablation function with realistic physical properties.

Key words

Ice flow dynamics potential symmetries 

References

  1. Antontsev, S.N., Diaz, J.I., and Shmarev, S.I., Energy Methods for Free Boundary Problems (Birkhäuser, Boston, 2002).Google Scholar
  2. Bueler, E, Lingle, C.S., Kallen-Brown, J.A., Covey, D.N., AND Bowman L.N. (2005), Exact solutions and verification of numerical models for isothermal ice sheets, J. Glaciol. 51, 291–306.CrossRefGoogle Scholar
  3. Bluman, G.W. and Kumei, S., Symmetries and Differential Equations (Springer-Verlag, New York, 1989).Google Scholar
  4. Bluman, G.W., Reid, G.J., and Kumei, S. (1988), New classes of symmetries for partial differential equations, J. Math. Phys. 29, 307–318.Google Scholar
  5. Calvo, N., Diaz, J. I. Durany, J., Schiavi, E., and Vazquez, C. (2002), On a doubly non-linear obstacle problem modelling ice sheet dynamics, SIAM J. Appl. Math. 29, 683–707.Google Scholar
  6. Carrillo, J., and Wittbol, P. (1999), Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, J. Diff. Eq. 156, 93–121.CrossRefGoogle Scholar
  7. Diaz, J.I. and Schiavi, S., Tratamiento matematico de una ecuacion parabolica cuasilineal degenerada en Glaciologia, (Electronic Proceedings of the XIV CEDYA-IV Congreso de Matemática Aplicada, Vic, Barcelona, 1995, http://www.mal.upc.es/cedya/cedya.html)Google Scholar
  8. Diaz, J.I. and Schiavi, S. (1999), On a degenerate parabolic/hyperbolic system in glaciology giving rise to free boundary, Nonlinear Anal, 38, 649–673.CrossRefGoogle Scholar
  9. Diaz, J.I. and Shmarev, S.I., On the free boundary associate to some nonlinear parabolic equations with discontinuous perturbations. In press: Archive Rational Mechanics and Analysis, 2008.Google Scholar
  10. Duvaut, G. and Lions, J.L., Les Inéquations en Mécanique el en Physique (París, Dunod, 1972).Google Scholar
  11. Fowler, A.C. (1992), Modelling ice sheet dynamics, Geophys. Astrophys. Fluid Dyn. 63, 29–65.CrossRefGoogle Scholar
  12. Halifar, P., (1981), On the dynamics of ice sheets, J. Geophys. Res. 86C11, 11065–11072.CrossRefGoogle Scholar
  13. Halifar, P., (1983), On the dynamics of ice sheets 2, J. Geophys. Res. 88C10, 6043–6051.CrossRefGoogle Scholar
  14. Hindmarsh, R.C.A. (1990), Time-scales and degrees of freedom operating in the evolution of continental ice sheets, Trans R. Soc. Edinburgh, Earth Sci. 81, 371–384.Google Scholar
  15. Hindmarsh, R.C.A., Qualitative Dynamics of Marine Sheets, In Ice in the climate system, Berlin (ed. Peltier, W.R.) (Springer-Verlag, NATO ASI Series I: Global Environmental Change 12, 1993) pp. 67–93.Google Scholar
  16. Nye, J.F., (2000), A flow model for the polar caps of Mars, J. Glaciol. 46, 438–444.CrossRefGoogle Scholar
  17. Paterson, W.S.B., The Physics of Glaciers (Pergamon, Oxford, 1981).Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 2008

Authors and Affiliations

  • J. I. Díaz
    • 1
  • R. J. Wiltshire
    • 2
  1. 1.Departamento de Matemática Aplicada, Facultad de MatemáticasUniversidad Complutense de MadridMadridSpain
  2. 2.The Division of Mathematics and StatisticsThe University of GlamorganPontypriddGreat Britain

Personalised recommendations