Skip to main content

Remark on Spectral Rigidity for Magnetic Schrödinger Operators

  • Chapter
Modern Analysis and Applications

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 191))

Abstract

We give a simple proof of Guillemin’s theorem on the determination of the magnetic field on the torus by the spectrum of the corresponding Schrödinger operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Eskin, Inverse spectral problem for the Schrödinger equation with periodic vector potential. Comm. Math. Phys. 125 (1989), 263–300.

    Article  MATH  MathSciNet  Google Scholar 

  2. G. Eskin, J. Ralston, Inverse spectral problems in rectangular domains. Commun. PDE 32 (2007), 971–1000.

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Eskin, J. Ralston, E. Trubowitz, On isospectral periodic potentials in ℝ n, I and II. Commun. Pure and Appl. Math. 37 (1984), 647–676, 715–753.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Gordon, Survey of isospectral manifolds. Handbook of Differential Geometry 1 (2000), North Holland, 747–778.

    Article  Google Scholar 

  5. V. Guillemin, Inverse spectral results on two-dimensional tori. Journal of the AMS 3 (1990), 375–387.

    MATH  MathSciNet  Google Scholar 

  6. V. Guillemin, D. Kazdhan, Some inverse spectral results for negatively curved 2-manifolds. Topology 19 (1980), 301–312.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Hadamard, Le Problème de Cauchy et les Equations aux Dérivées Partielles Linéaires Hyperboliques. Hermann, Paris, 1932.

    Google Scholar 

  8. L. Hörmander, The Analysis of Linear Partial Differential Operators, III. Springer-Verlag, Vienna, 1985.

    MATH  Google Scholar 

  9. M. Krein, Solution of the inverse Sturm-Liouville problem (Russian). Doklady Akad. Nauk SSSR (N.S.) 76 (1951), 21–24.

    MathSciNet  Google Scholar 

  10. M. Krein, Determination of the density of a nonhomogeneous cord by its frequency spectrum. Doklady Akad. Nauk SSSR (N.S.) 76 (1951), 345–348.

    MathSciNet  Google Scholar 

  11. V.A. Marchenko, Operatory Shturma Liuvilliâ i ikh prilozhen’iâ, Naukova Dumka, Kiev, 1977.

    Google Scholar 

  12. T. Sunada, Riemannian coverings and isospectral manifolds. Ann. of Math. 121 (1985), 169–186.

    Article  MathSciNet  Google Scholar 

  13. J. Zak, Dynamics of electrons in solids in external fields. Phys. Rev. 168 (1968), 686–695.

    Article  Google Scholar 

  14. S. Zelditch, Spectral determination of analytic, bi-axisymmetric plane domains. Geometric Funct. Anal. 10 (2000), 628–677.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Eskin, G., Ralston, J. (2009). Remark on Spectral Rigidity for Magnetic Schrödinger Operators. In: Adamyan, V.M., et al. Modern Analysis and Applications. Operator Theory: Advances and Applications, vol 191. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9921-4_19

Download citation

Publish with us

Policies and ethics