Skip to main content

Ramified Integrals, Casselman Phenomenon, and Holomorphic Continuations of Group Representations

  • Conference paper
  • 1764 Accesses

Part of the Trends in Mathematics book series (TM)

Abstract

Let G be a real semisimple Lie group, K its maximal compact subgroup, and Gc its complexification. It is known that all K-finite matrix elements on G admit holomorphic continuations to branching functions on Gc having singularities at a prescribed divisor. We propose a geometric explanation of this phenomenon.

Keywords

  • Irreducible Representation
  • Unitary Representation
  • Spinor Representation
  • Maximal Compact Subgroup
  • Principal Series

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supported by the grant FWF, project P19064, Russian Federal Agency for Nuclear Energy, Dutch grant NWO.047.017.015, and grant JSPS-RFBR-07.01.91209.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Casselman, W., Milicic, Dr. Asymptotic behavior of matrix coefficients of admissible representations. Duke Math. J. 49 (1982), no. 4, 869–930.

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Heckman, G.I., Opdam, E.M., Root systems and hypergeometric functions. I. Compositio Math, 64 (1987), 329–352

    MATH  MathSciNet  Google Scholar 

  3. Neretin, Yu.A. K-finite matrix elements of irreducible Harish—Chandra modules are hypergeometric. Funct. Anal. Appl., 41 2007, 295–302.

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Pham, F., Introduction l’étude topologique des singularités de Landau., Paris, Gauthier-Villars, 1967

    MATH  Google Scholar 

  5. Vasiliev, V.A., Ramified integrals, Moscow, Independent University, 2000; Engl. transl., Kluwer, 1995

    Google Scholar 

  6. Vilenkin N.Ya. Special functions and the theory of group representations. Amer. Math. Soc., 1968 (translated from Russian 1965 edition).

    Google Scholar 

References

  1. Akhiezer, D.N.; Gindikin, S.G. On Stein extensions of real symmetric spaces. Math. Ann. 286 (1990), no. 1–3, 1–12.

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Berezin, F.A. Canonical transformations in the second quantization representation. (Russian) Dokl. Akad. Nauk SSSR 150 1963 959–962.

    MATH  MathSciNet  Google Scholar 

  3. Berezin F.A. The method of second quantization. Nauka Moscow, 1965; English transl.: Academic Press, 1966.

    Google Scholar 

  4. Goodman, R., Holomorphic representations of nilpotent Lie groups, J. Funct. Anal., 31 (1979), 115–137.

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Goodman, R.; Wallach, N.R. Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle. J. Reine Angew. Math. 347 (1984), 69–133.

    MATH  MathSciNet  Google Scholar 

  6. Graev, M.I., Unitary representations of real semisimple Lie groups. Trans. Moscow Math. Soc, v. 7., 1958, 335–389. English transl., in Amer. Math. Soc. Translations. Series 2, Vol. 66: Thirteen papers on group theory, algebraic geometry and algebraic topology.

    MATH  MathSciNet  Google Scholar 

  7. Kirillov, A.A. Unitary representations of nilpotent Lie groups. (Russian) Russian Math. Surveys, 17 (1962), 53–104.

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Kirillov, A.A. Elements of the theory of representations. Springer-Verlag, Berlin-New York, 1976.

    MATH  Google Scholar 

  9. Krötz, B.; Stanton, R. J. Holomorphic extensions of representations. I. Automorphic functions. Ann. of Math. (2) 159 (2004), no. 2, 641–724.

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Krötz, B.; Stanton, R. J. Holomorphic extensions of representations. II. Geometry and harmonic analysis. Geom. Funct. Anal. 15 (2005), no. 1, 190–245.

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Litvinov, G.L. On completely reducible representations of complex and real Lie groups. Funct. Anal. Appl., v. 3 (1969), 332–334.

    Google Scholar 

  12. Litvinov, G.L. Group representations in locally convex spaces, and topological group algebras. (Russian) Trudy Sem. Vektor. Tenzor. Anal. 16 (1972), 267–349; English transl., in Selecta Math. Soviet. 7 (1988), 101–182.

    MathSciNet  Google Scholar 

  13. Nelson, E., Analytic vectors. Ann. Math., 70 (1959), 572–615.

    CrossRef  Google Scholar 

  14. Neretin, Yu.A. On the spinor representation of O(∞, C). Dokl. Akad. Nauk SSSR 289 (1986), no. 2, 282–285. English transl.: Soviet Math. Dokl. 34 (1987), no. 1, 71–74.

    MathSciNet  Google Scholar 

  15. Neretin, Yu.A. Holomorphic continuations of representations of the group of diffeomorphisms of the circle. Mat. Sbornik 180 (1989), no. 5, 635–657, 720; translation in Russ. Acad. Sci. Sbornik. Math., v. 67 (1990); avallable via www.mat.univie.ac.at/~neretin

    Google Scholar 

  16. Neretin, Yu.A. Categories of symmetries and infinite-dimensional groups. London Mathematical Society Monographs, 16, Oxford University Press, 1996.

    Google Scholar 

  17. Neretin, Yu.A. A construction of finite-dimensional faithful representation of Lie algebra. Proceedings of the 22nd Winter School “Geometry and Physics” (Srni, 2002). Rend. Circ. Mat. Palermo (2) Suppl. No. 71 (2003), 159–161.

    Google Scholar 

  18. Neretin Yu.A. Lectures on Gaussian integral operators and classical groups. Avallable via http://www.mat.univie.ac.at/neretin/lectures/lectures.htm

    Google Scholar 

  19. Olshanskii, G.I. Invariant cones in Lie algebras, Lie semigroups and holomorphic discrete series. Funct. Anal. Appl. 15, 275–285 (1982).

    CrossRef  Google Scholar 

  20. Shale, D., Stinespring, W.F., Spinor representations of infinite orthogonal groups. J. Math. Mech. 14 1965 315–322.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

To Mark Iosifovich Graev on his 85th birthday

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Neretin, Y.A. (2009). Ramified Integrals, Casselman Phenomenon, and Holomorphic Continuations of Group Representations. In: Gustafsson, B., Vasil’ev, A. (eds) Analysis and Mathematical Physics. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9906-1_21

Download citation