An Overview on Functional Calculus in Different Settings

  • Fabrizio Colombo
  • Graziano Gentili
  • Irene Sabadini
  • Daniele C. Struppa
Conference paper
Part of the Trends in Mathematics book series (TM)


In this paper we give an overview of some different versions of functional calculus in a noncommutative setting. In particular, we will focus on a recent functional calculus based on the notion of slice-hyperholomorphy. This notion, in suitable versions, will allow us to study the case of linear quaternionic operators, as well as the case of n-tuples of linear (real or complex) operators.


Functional calculus spectral theory bounded and unbounded operators linear quaternionic operators n-tuples of linear operators 

Mathematics Subject Classification (2000)

Primary 47A10, 30G35 Secondary 47A60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Adler, Quaternionic Quantum Field Theory, Oxford University Press (1995).Google Scholar
  2. [2]
    R.F.V. Anderson, The Weyl functional calculus, J. Funct. Anal. 4 (1969), 240–267.zbMATHCrossRefGoogle Scholar
  3. [3]
    F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis, Pitman Res. Notes in Math., 76, 1982.Google Scholar
  4. [4]
    F. Colombo, G. Gentili, I. Sabadini, D.C. Struppa, A functional calculus in a non commutative setting, Electron. Res. Announc. Math. Sci., 14 (2007), 60–68.MathSciNetGoogle Scholar
  5. [5]
    F. Colombo, G. Gentili, I. Sabadini, D.C. Struppa, Non commutative functional calculus: bounded operators, preprint, 2007.Google Scholar
  6. [6]
    F. Colombo, G. Gentili, I. Sabadini, D.C. Struppa, Non commutative functional calculus: unbounded operators, preprint, 2007.Google Scholar
  7. [7]
    F. Colombo, I. Sabadini, A structure formula for slice monogenic functions and some of its consequences, this volume.Google Scholar
  8. [8]
    F. Colombo, I. Sabadini, F. Sommen, D.C. Struppa, Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics, Vol. 39, Birkhäuser, Boston, 2004.Google Scholar
  9. [9]
    F. Colombo, I. Sabadini, D.C. Struppa, A new functional calculus for noncommuting operators, J. Funct. Anal., 254 (2008), 2255–2274.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    F. Colombo, I. Sabadini, D.C. Struppa, Slice monogenic functions, to appear in Israel Journal of Mathematics.Google Scholar
  11. [11]
    N. Dunford, J. Schwartz, Linear operators, part I: general theory, J. Wiley and Sons (1988).Google Scholar
  12. [12]
    G. Gentili, C. Stoppato, Zeros of regular functions and polynomials of a quaternionic variable, to appear in Michigan Math. J.Google Scholar
  13. [13]
    G. Gentili, D.C. Struppa, A new approach to Cullen-regular functions of a quaternionic variable, C.R. Acad. Sci. Paris, 342 (2006), 741–744.zbMATHMathSciNetGoogle Scholar
  14. [14]
    G. Gentili, D.C. Struppa, A new theory of regular functions of a quaternionic variable, Adv. Math., 216 (2007), 279–301.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    B. Jefferies, Spectral properties of noncommuting operators, Lecture Notes in Mathematics, 1843, Springer-Verlag, Berlin, 2004.Google Scholar
  16. [16]
    B. Jefferies, A. McIntosh, The Weyl calculus and Clifford analysis, Bull. Austral. Math. Soc., 57 (1998), 329–341.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    B. Jefferies, A. McIntosh, J. Picton-Warlow, The monogenic functional calculus, Studia Math., 136 (1999), 99–119.zbMATHMathSciNetGoogle Scholar
  18. [18]
    V.V. Kisil, E. Ramirez de Arellano, The Riesz-Clifford functional calculus for noncommuting operators and quantum field theory, Math. Methods Appl. Sci., 19 (1996), 593–605.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    V.V. Kisil, E. Ramirez de Arellano, A functional model for quantum mechanics: unbounded operators, Math. Methods Appl. Sci., 20 (1997), 745–757.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    A. McIntosh, A. Pryde, A functional calculus for several commuting operators, Indiana U. Math. J., 36 (1987), 421–439.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    C. Stoppato, Poles of regular quaternionic functions, To appear in Complex Var. Elliptic Equ.Google Scholar
  22. [22]
    A. Sudbery, Quaternionic analysis, Math. Proc. Camb. Phil. Soc. 85 (1979), 199–225.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    J.L. Taylor, The analytic-functional calculus for several commuting operators, Acta Math., 125 (1970), 1–38.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    J.L. Taylor, A general framework for a multi-operator functional calculus, Advances in Math., 9 (1972), 183–252.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    M.E. Taylor, Functions of several self-adjoint operators, Proc. Amer. Math. Soc., 19 (1968), 91–98.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Fabrizio Colombo
    • 1
  • Graziano Gentili
    • 2
  • Irene Sabadini
    • 1
  • Daniele C. Struppa
    • 3
  1. 1.Department of Mathematics and Computer SciencesChapman UniversityOrangeUSA
  2. 2.Dipartimento di MatematicaPolitecnico di MilanoMilanoItaly
  3. 3.Dipartimento di MatematicaUniversitá di FirenzeFirenzeItaly

Personalised recommendations