Factorizations of Totally Negative Matrices

  • V. Cortés
  • J.M. Peña
Part of the Operator Theory: Advances and Applications book series (OT, volume 199)


A matrix is called totally negative if all its minors are negative. In this paper we characterize two decompositions of totally negative matrices: the QR decomposition and the symmetric-triangular decomposition.

Mathematics Subject Classification (2000)

15A23 65F25 15A48 15A15 


Totally negative matrix QR decomposition symmetric-triangular decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Ando, Totally positive matrices, Linear Algebra Appl. 90 (1987) 165–219.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    C.M. Araújo, J.R. Torregrosa, A.M. Urbano, Totally nonpositive completions on partial matrices, Linear Algebra Appl. 413 (2006), 403–424.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    R.B. Bapat, T.E.S. Raghavan, Nonnegative Matrices and Applications, Cambridge University Press, New York, 1997.zbMATHCrossRefGoogle Scholar
  4. [4]
    C.W. Cryer, LU-factorization of totally positive matrices, Linear Algebra Appl. 7 (1973) 83–92.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    S.M. Fallat, P. Van Den Driessche, On matrices with all minors negative, Electron. J. Linear Algebra 7 (2000), 92–99.zbMATHMathSciNetGoogle Scholar
  6. [6]
    J. Garloff, Intervals of almost totally positive matrices, Linear Algebra Appl. 363 (2003) 103–108.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    M. Gasca and J.M. Peña, A test for strict sign-regularity, Linear Algebra Appl. 197 (1994) 133–142.CrossRefMathSciNetGoogle Scholar
  8. [8]
    M. Gasca and J.M. Peña, A matricial description of Neville elimination with application to total positivity, Linear Algebra Appl. 202 (1994) 33–54.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    G.H. Golub and J.Y. Yuan, Symmetric-triangular decomposition and its applications. I. Theorems and algorithms, BIT 42 (2002) 814–822.zbMATHMathSciNetGoogle Scholar
  10. [10]
    T. Parthasarathy and G. Ravindran, N-matrices, Linear Algebra Appl. 139 (1990), 89–102.CrossRefMathSciNetGoogle Scholar
  11. [11]
    J. M. Peña (Ed.), Shape preserving representations in Computer-Aided Geometric Design, Nova Science Publishers, Commack (New York), 1999.zbMATHGoogle Scholar
  12. [12]
    J.M. Peña, On nonsingular sign regular matrices, Linear Algebra Appl. 359 (2003), 91–100.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    R. Saigal, On the class of complementary cones and Lemke’s algorithm, SIAM J. Appl. Math. 23 (1972), 46–60.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  • V. Cortés
    • 1
  • J.M. Peña
    • 1
  1. 1.Depto. Matemática AplicadaUniversidad de ZaragozaZaragozaSpain

Personalised recommendations