Skip to main content

Bortezomib-Induced Peripheral Neuropathy in Multiple Myeloma: Principles of Identification and Management

  • Chapter
  • First Online:
Bortezomib in the Treatment of Multiple Myeloma

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

The first-in-class proteasome inhibitor bortezomib is a potent anti-myeloma drug that now figures prominently in the management of patients with both newly diagnosed and relapsed multiple myeloma. With current studies evaluating its efficacy as part of conditioning prior to and maintenance therapy following autologous stem cell transplantation, it is likely that its role in the management of the disease will expand further. Peripheral neuropathy was recognized as a toxicity associated with bortezomib at an early point in the clinical development of the agent, and further study has provided considerable insight regarding this issue. It is critical that clinicians recognize and appropriately manage bortezomib-induced PN to optimize care for patients. This chapter focuses on the identification, characterization, and management of bortezomib-induced peripheral neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richardson PG, Sonneveld P, Schuster MW et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498

    Article  PubMed  CAS  Google Scholar 

  2. San Miguel JF, Schlag R, Khuageva NK et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359:906–917

    Article  PubMed  CAS  Google Scholar 

  3. Roussel M, Moreau P, Huynh A et al (2010) Bortezomib and high-dose melphalan as conditioning regimen before autologous stem cell transplantation in patients with de novo multiple myeloma: a phase 2 study of the Intergroupe Francophone du Myelome (IFM). Blood 115:32–37

    Article  PubMed  CAS  Google Scholar 

  4. Magarotto V, Palumbo A (2009) Evolving role of novel agents for maintenance therapy in myeloma. Cancer J 15:494–501

    Article  PubMed  CAS  Google Scholar 

  5. Orlowski RZ, Stinchcombe TE, Mitchell BS et al (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20:4420–4427

    Article  PubMed  CAS  Google Scholar 

  6. Richardson PG, Barlogie B, Berenson J et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617

    Article  PubMed  CAS  Google Scholar 

  7. Jagannath S, Barlogie B, Berenson J et al (2004) A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127:165–172

    Article  PubMed  CAS  Google Scholar 

  8. Corso A, Mangiacavalli S, Varettoni M, Pascutto C, Zappasodi P, Lazzarino M (2010) Bortezomib-induced peripheral neuropathy in multiple myeloma: a comparison between previously treated and untreated patients. Leuk Res 34(4):471–474

    Article  PubMed  CAS  Google Scholar 

  9. Pineda-Roman M, Zangari M, van Rhee F et al (2008) VTD combination therapy with bortezomib-thalidomide-dexamethasone is highly effective in advanced and refractory multiple myeloma. Leukemia 22:1419–1427

    Article  PubMed  CAS  Google Scholar 

  10. Richardson PG, Weller E, Jagannath S et al (2009) Multicenter, phase I, dose-escalation trial of lenalidomide plus bortezomib for relapsed and relapsed/refractory multiple myeloma. J Clin Oncol 27(34):5713–5719

    Article  PubMed  CAS  Google Scholar 

  11. Richardson PG, Briemberg H, Jagannath S et al (2006) Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol 24:3113–3120

    Article  PubMed  CAS  Google Scholar 

  12. Richardson PG, Xie W, Mitsiades C et al (2009) Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. J Clin Oncol 27:3518–3525

    Article  PubMed  CAS  Google Scholar 

  13. Stubblefield MD, Slovin S, MacGregor-Cortelli B et al (2006) An electrodiagnostic evaluation of the effect of pre-existing peripheral nervous system disorders in patients treated with the novel proteasome inhibitor bortezomib. Clin Oncol (R Coll Radiol) 18:410–418

    Article  CAS  Google Scholar 

  14. Lanzani F, Mattavelli L, Frigeni B et al (2008) Role of a pre-existing neuropathy on the course of bortezomib-induced peripheral neurotoxicity. J Peripher Nerv Syst 13:267–274

    Article  PubMed  Google Scholar 

  15. El-Cheikh J, Stoppa AM, Bouabdallah R et al (2008) Features and risk factors of peripheral neuropathy during treatment with bortezomib for advanced multiple myeloma. Clin Lymphoma Myeloma 8:146–152

    Article  PubMed  CAS  Google Scholar 

  16. Badros A, Goloubeva O, Dalal JS et al (2007) Neurotoxicity of bortezomib therapy in multiple myeloma: a single-center experience and review of the literature. Cancer 110:1042–1049

    Article  PubMed  CAS  Google Scholar 

  17. Berenson JR, Jagannath S, Barlogie B et al (2005) Safety of prolonged therapy with bortezomib in relapsed or refractory multiple myeloma. Cancer 104:2141–2148

    Article  PubMed  CAS  Google Scholar 

  18. Chaudhry V, Cornblath DR, Polydefkis M, Ferguson A, Borrello I (2008) Characteristics of bortezomib- and thalidomide-induced peripheral neuropathy. J Peripher Nerv Syst 13:275–282

    Article  PubMed  CAS  Google Scholar 

  19. Filosto M, Rossi G, Pelizzari AM et al (2007) A high-dose bortezomib neuropathy with sensory ataxia and myelin involvement. J Neurol Sci 263:40–43

    Article  PubMed  CAS  Google Scholar 

  20. Stubblefield MD, Burstein HJ, Burton AW et al (2009) NCCN task force report: management of neuropathy in cancer. J Natl Compr Canc Netw 7(Suppl 5):S1–S26, quiz S27–S28

    PubMed  Google Scholar 

  21. Bigotte L, Arvidson B, Olsson Y (1982) Cytofluorescence localization of adriamycin in the nervous system. I. Distribution of the drug in the central nervous system of normal adult mice after intravenous injection. Acta Neuropathol 57:121–129

    Article  PubMed  CAS  Google Scholar 

  22. Cavaletti G, Gilardini A, Canta A et al (2007) Bortezomib-induced peripheral neurotoxicity: a neurophysiological and pathological study in the rat. Exp Neurol 204:317–325

    Article  PubMed  CAS  Google Scholar 

  23. Meregalli C, Canta A, Carozzi VA et al (2010) Bortezomib-induced painful neuropathy in rats: a behavioral, neurophysiological and pathological study in rats. Eur J Pain 14(4):343–350

    Article  PubMed  CAS  Google Scholar 

  24. Casafont I, Berciano MT, Lafarga M (2010) Bortezomib induces the formation of nuclear poly(A) RNA granules enriched in Sam68 and PABPN1 in sensory ganglia neurons. Neurotox Res 17:167–178

    Article  PubMed  CAS  Google Scholar 

  25. Pei XY, Dai Y, Grant S (2003) The proteasome inhibitor bortezomib promotes mitochondrial injury and apoptosis induced by the small molecule Bcl-2 inhibitor HA14-1 in multiple myeloma cells. Leukemia 17:2036–2045

    Article  PubMed  CAS  Google Scholar 

  26. Pei XY, Dai Y, Grant S (2004) Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 10:3839–3852

    Article  PubMed  CAS  Google Scholar 

  27. Landowski TH, Megli CJ, Nullmeyer KD, Lynch RM, Dorr RT (2005) Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res 65:3828–3836

    Article  PubMed  CAS  Google Scholar 

  28. Poruchynsky MS, Sackett DL, Robey RW, Ward Y, Annunziata C, Fojo T (2008) Proteasome inhibitors increase tubulin polymerization and stabilization in tissue culture cells: a possible mechanism contributing to peripheral neuropathy and cellular toxicity following proteasome inhibition. Cell Cycle 7:940–949

    Article  PubMed  CAS  Google Scholar 

  29. Miller AB, Hoogstraten B, Staquet M, Winkler A (1981) Reporting results of cancer treatment. Cancer 47:207–214

    Article  PubMed  CAS  Google Scholar 

  30. Ajani JA, Welch SR, Raber MN, Fields WS, Krakoff IH (1990) Comprehensive criteria for assessing therapy-induced toxicity. Cancer Invest 8:147–159

    Article  PubMed  CAS  Google Scholar 

  31. Oken MM, Creech RH, Tormey DC et al (1982) Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 5:649–655

    Article  PubMed  CAS  Google Scholar 

  32. Institute NC (2006) National Cancer Institute-Common Terminology Criteria for Adverse Events (NCI-CTCAE), version 3.0. Available at: http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf.

  33. Cavaletti G, Jann S, Pace A et al (2006) Multi-center assessment of the total neuropathy score for chemotherapy-induced peripheral neurotoxicity. J Peripher Nerv Syst 11:135–141

    Article  PubMed  CAS  Google Scholar 

  34. Cavaletti G, Frigeni B, Lanzani F et al (2007) The Total Neuropathy Score as an assessment tool for grading the course of chemotherapy-induced peripheral neurotoxicity: comparison with the National Cancer Institute-Common Toxicity Scale. J Peripher Nerv Syst 12:210–215

    Article  PubMed  Google Scholar 

  35. Postma TJ, Heimans JJ, Muller MJ, Ossenkoppele GJ, Vermorken JB, Aaronson NK (1998) Pitfalls in grading severity of chemotherapy-induced peripheral neuropathy. Ann Oncol 9:739–744

    Article  PubMed  CAS  Google Scholar 

  36. Calhoun EA, Welshman EE, Chang CH et al (2003) Psychometric evaluation of the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity (Fact/GOG-Ntx) questionnaire for patients receiving systemic chemotherapy. Int J Gynecol Cancer 13:741–748

    Article  PubMed  CAS  Google Scholar 

  37. Hausheer FH, Schilsky RL, Bain S, Berghorn EJ, Lieberman F (2006) Diagnosis, management, and evaluation of chemotherapy-induced peripheral neuropathy. Semin Oncol 33:15–49

    Article  PubMed  CAS  Google Scholar 

  38. du Bois A, Schlaich M, Luck HJ et al (1999) Evaluation of neurotoxicity induced by paclitaxel second-line chemotherapy. Support Care Cancer 7:354–361

    Article  PubMed  Google Scholar 

  39. Richardson PG, Sonneveld P, Schuster MW et al (2009) Reversibility of symptomatic peripheral neuropathy with bortezomib in the phase III APEX trial in relapsed multiple myeloma: impact of a dose-modification guideline. Br J Haematol 144:895–903

    Article  PubMed  CAS  Google Scholar 

  40. Cleary JF (2007) The pharmacologic management of cancer pain. J Palliat Med 10:1369–1394

    Article  PubMed  Google Scholar 

  41. Colvin LA, Johnson PR, Mitchell R, Fleetwood-Walker SM, Fallon M (2008) From bench to bedside: a case of rapid reversal of bortezomib-induced neuropathic pain by the TRPM8 activator, menthol. J Clin Oncol 26:4519–4520

    Article  PubMed  Google Scholar 

  42. Mateos M, Oriol A, Martinez J et al (2009) A prospective, multicenter, randomized trial of bortezomib/melphalan/prednisone (VMP) versus bortezomib/thalidomide/prednisone (VTP) as induction therapy followed by maintenance treatment with bortezomib/thalidomide (VT) versus bortezomib/prednisone (VP) in elderly untreated patients with multiple myeloma older than 65 years. Abstract 3. Blood 114:3

    Article  Google Scholar 

  43. Reeder C, Reece D, Kukreti V et al (2009) A phase II trial comparison of once versus twice weekly bortezomib in CYBORD chemotherapy for newly diagnosed myeloma: identical high response rates and less toxicity. Abstract 616. Blood 114:255

    Google Scholar 

  44. Ziegler D, Hanefeld M, Ruhnau KJ et al (1995) Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant alpha-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN Study). Diabetologia 38:1425–1433

    Article  PubMed  CAS  Google Scholar 

  45. Packer L, Kraemer K, Rimbach G (2001) Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition 17:888–895

    Article  PubMed  CAS  Google Scholar 

  46. Ziegler D, Hanefeld M, Ruhnau KJ et al (1999) Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diabetes Care 22:1296–1301

    Article  PubMed  CAS  Google Scholar 

  47. Vahdat L, Papadopoulos K, Lange D et al (2001) Reduction of paclitaxel-induced peripheral neuropathy with glutamine. Clin Cancer Res 7:1192–1197

    PubMed  CAS  Google Scholar 

  48. Wang WS, Lin JK, Lin TC et al (2007) Oral glutamine is effective for preventing oxaliplatin-induced neuropathy in colorectal cancer patients. Oncologist 12:312–319

    Article  PubMed  CAS  Google Scholar 

  49. Jin HW, Flatters SJ, Xiao WH, Mulhern HL, Bennett GJ (2008) Prevention of paclitaxel-evoked painful peripheral neuropathy by acetyl-L-carnitine: effects on axonal mitochondria, sensory nerve fiber terminal arbors, and cutaneous Langerhans cells. Exp Neurol 210:229–237

    Article  PubMed  CAS  Google Scholar 

  50. Ang CD, Alviar MJ, Dans AL et al (2008) Vitamin B for treating peripheral neuropathy. Cochrane Database Syst Rev Issue 3:CD004573

    Google Scholar 

  51. Argyriou AA, Chroni E, Koutras A et al (2006) Preventing paclitaxel-induced peripheral neuropathy: a phase II trial of vitamin E supplementation. J Pain Symptom Manage 32:237–244

    Article  PubMed  CAS  Google Scholar 

  52. Gdynia HJ, Muller T, Sperfeld AD et al (2008) Severe sensorimotor neuropathy after intake of highest dosages of vitamin B6. Neuromuscul Disord 18:156–158

    Article  PubMed  Google Scholar 

  53. Zou W, Yue P, Lin N et al (2006) Vitamin C inactivates the proteasome inhibitor PS-341 in human cancer cells. Clin Cancer Res 12:273–280

    Article  PubMed  CAS  Google Scholar 

  54. Perrone G, Hideshima T, Ikeda H et al (2009) Ascorbic acid inhibits antitumor activity of bortezomib in vivo. Leukemia 23:1679–1686

    Article  PubMed  CAS  Google Scholar 

  55. O’Connor OA, Stewart AK, Vallone M et al (2009) A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR-171) in patients with hematologic malignancies. Clin Cancer Res 15:7085–7091

    Article  PubMed  Google Scholar 

  56. Richardson P, Hofmeister C, Jakubowiak A et al (2009) Phase 1 clinical trial of the novel structure proteasome inhibitor NPI-0052 in patients with relapsed and relapsed/refractory multiple myeloma (MM). Abstract 431. Blood 114:179

    Google Scholar 

  57. Lacy MQ, Hayman SR, Gertz MA et al (2009) Pomalidomide (CC4047) plus low-dose dexamethasone as therapy for relapsed multiple myeloma. J Clin Oncol 27:5008–5014

    Article  PubMed  CAS  Google Scholar 

  58. Dimopoulos M, Spencer A, Attal M et al (2007) Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 357:2123–2132

    Article  PubMed  CAS  Google Scholar 

  59. Mitsiades CS, Mitsiades NS, McMullan CJ et al (2006) Antimyeloma activity of heat shock protein-90 inhibition. Blood 107:1092–1100

    Article  PubMed  CAS  Google Scholar 

  60. Richardson PG, Chanan-Khan A, Lonial S et al (2009) Tanespimycin plus bortezomib in patients with relapsed and refractory multiple myeloma: final results of a phase I/II study. Abstract 8503. J Clin Oncol 27:434s

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob P. Laubach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Laubach, J.P., Richardson, P.G. (2011). Bortezomib-Induced Peripheral Neuropathy in Multiple Myeloma: Principles of Identification and Management. In: Ghobrial, I., Richardson, P., Anderson, K. (eds) Bortezomib in the Treatment of Multiple Myeloma. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-7643-8948-2_7

Download citation

Publish with us

Policies and ethics