Skip to main content

Magnetic Resonance Imaging: From Spin Physics to Medical Diagnosis

  • Chapter
The Spin

Part of the book series: Progress in Mathematical Physics ((PMP,volume 55))

Abstract

Two rather similar historical evolutions are evoked, each one originating in fundamental spin studies by physicists, and ending as magnetic resonance imaging (MRI), a set of invaluable tools for clinical diagnosis in the hands of medical doctors. The first one starts with the early work on nuclear magnetic resonance, the founding stone of the usual proton-based MRI, of which the basic principles are described. The second one starts with the optical pumping developments made to study the effects of spin polarization in various fundamental problems. Its unexpected outcome is a unique imaging modality, also based on MRI, for the study of lung physiology and pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. I.I. Rabi, S. Millman, P. Kusch, and J. R. Zacharias, A new method of measuring nuclear magnetic moments, Phys. Rev. 53 (1938), 318; I.I. Rabi, S. Millman, P. Kusch, and J. R. Zacharias, The molecular beam resonance method for measuring nuclear magnetic moments. The magnetic moments of Li6, Li7 and F19, Phys.Rev. 55 (1939), 526.

    Article  ADS  Google Scholar 

  2. E.M. Purcell, H.C. Torrey, and R.V. Pound, Resonance absorption by nuclear magnetic moments in a solid, Phys. Rev. 69 (1946), 37.

    Article  ADS  Google Scholar 

  3. F. Bloch, W. W. Hansen, and M. Packard, Nuclear induction, Phys. Rev. 69 (1946), 127; F. Bloch, W. W. Hansen, and M. Packard, The nuclear induction experiment, Phys. Rev. 70 (1946), 474.

    Article  ADS  Google Scholar 

  4. F. Bloch, Nuclear induction, Phys. Rev. 70 (1946), 460.

    Article  ADS  Google Scholar 

  5. H.C. Torrey, Transient nutations in nuclear magnetic resonance, Phys. Rev. 76 (1949), 1059.

    Article  MATH  ADS  Google Scholar 

  6. E.L. Hahn, Nuclear induction due to free Larmor precession, Phys. Rev. 77 (1950), 297.

    Article  ADS  Google Scholar 

  7. E.L. Hahn, Spin echoes, Phys. Rev. 80 (1950), 580.

    Article  MATH  ADS  Google Scholar 

  8. J.T. Arnold, S.S. Dharmatti, and M.E. Packard, Chemical effects on nuclear induction signals from organic compounds, J. Chem. Phys. 19 (1951), 507.

    Article  ADS  Google Scholar 

  9. C.J. Gorter and L.J.F. Broer, Negative result of an attempt to observe nuclear magnetic resonance in solids, Physica 9 (1942), 591.

    Article  ADS  Google Scholar 

  10. R.J. Singer, Blood-flow rates by NMR measurements, Science 130 (1959), 1652.

    Article  ADS  Google Scholar 

  11. J.A. Jackson and W.H. Langham, Whole-body NMR spectrometer, Rev. Sci. Instrum. 39 (1968), 510.

    Article  ADS  Google Scholar 

  12. P.C. Lauterbur, Image formation by induced local interactions: examples of employing nuclear magnetic resonance, Nature 242 (1973), 190.

    Article  ADS  Google Scholar 

  13. A.N. Garroway, P.K. Grannell, and P. Mansfield, Image formation in NMR by a selective irradiative process, J. Phys. C 7 (1974), L457.

    Article  ADS  Google Scholar 

  14. P. Mansfield and A.A. Maudsley, Planar spin imaging by NMR, J. Magn. Reson. 27 (1977), 101.

    Google Scholar 

  15. R.R. Ernst and W.A. Anderson, Application of Fourier transform spectroscopy to magnetic resonance, Rev. Sci. Instrum. 37 (1966), 93.

    Article  ADS  Google Scholar 

  16. A. Kumar, D. Welti, and R.R. Ernst, NMR-Fourier-Zeugmatography, J. Magn. Reson. 18 (1975), 69.

    Google Scholar 

  17. W.A. Edelstein, J.M.S. Hutchison, G. Johnson and T.W. Redpath, Spin warp NMR imaging and applications to human whole-body imaging, Phys. Med. Biol. 25 (1980), 751.

    Article  Google Scholar 

  18. S. Gleyzes, et al., Quantum jumps of light recording the birth and death of a photon in a cavity, Nature 446 (2007), 297.

    Article  ADS  Google Scholar 

  19. E.D. Pracht, J.F.T Arnold, T.T. Wang, et al., Oxygen-enhanced proton imaging of the human lung using T2*, Magn. Reson. Med. 53 (2005), 1193.

    Article  Google Scholar 

  20. A. Kastler, Optical methods of atomic orientation and of magnetic resonance, J. Opt. Soc. Am. 47 (1957), 460.

    Article  ADS  Google Scholar 

  21. B. Cagnac, J. Brossel and A. Kastler, RMN du mercure Hg-201 aligné par pompage optique, C.R Acad. Sci. 246 (1958), 1827.

    Google Scholar 

  22. J. Jeener, Equivalence between the “classical” and the “Warren” approaches for the effects of long range dipolar couplings in liquid NMR, J. Chem. Phys. 112 (2000), 5091.

    Article  ADS  Google Scholar 

  23. D.I. Hoult and P.C. Lauterbur, The sensitivity of the zeugmatographic experiment involving human samples, J. Magn. Reson. 34 (1979), 425.

    Google Scholar 

  24. J. Bittoun, B. Querleux and L. Darrasse, Advances in MR imaging of the skin, NMR Biomed. 19 (2006), 723; L. Darrasse and J.-C. Ginefri, Perspectives with cryogenic RF probes in biomedical MRI, Biochimie 85 (2003), 915.

    Article  Google Scholar 

  25. M. Mossle, et al., SQUID-detected in vivo MRI at microtesla magnetic fields, IEEE Transactions on Applied Superconductivity 15 (2005), 757.

    Article  Google Scholar 

  26. D. Budker and M. Romalis, Optical magnetometry, Nature Physics 3 (2007), 227.

    Article  ADS  Google Scholar 

  27. H.J. Mamin, M. Poggio, C.L. Degen and D. Rugar, Nuclear magnetic resonance imaging with 90-nm resolution, Nature Nanotechnology 2 (2007), 301.

    Article  ADS  Google Scholar 

  28. J. Pauly, P. Le Roux, D. Nishimura and A. Macovski, Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm, IEEE Trans. Med. Imaging 10 (1991), 53.

    Article  Google Scholar 

  29. G. McGibney, M.R. Smith, S.T. Nichols and A. Crawley, Quantitative evaluation of several partial Fourier reconstruction algorithms used in MRI, Magn. Reson. Med. 30 (1993), 5159.

    Article  Google Scholar 

  30. D.K. Sodickson and W.J. Manning, Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays, Magn. Reson. Med. 38 (1997), 1603.

    Article  Google Scholar 

  31. K.P. Pruessmann, M. Weiger, M.B. Scheidegger and P. Boesiger, SENSE: Sensitivity encoding for fast MRI, Magn. Reson. Med. 42 (1999), 2962.

    Article  Google Scholar 

  32. M. Lustig, D. Donoho and J.M. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magn. Reson. Med., in press, DOI: 10.1002/mrm.21391 (2007).

    Google Scholar 

  33. M. Goldman, H. Johannesson, O. Axelsson and M. Karlsson, Hyperpolarization of 13C through order transfer from parahydrogen: a new contrast agent for MRI, Magn. Reson. Imaging. 23 (2005), 153.

    Article  Google Scholar 

  34. S. Mansson, et al., 13C imaging-a new diagnostic platform, Eur Radiol. 16 (2006), 57.

    Article  Google Scholar 

  35. M.S. Albert, G.D. Cates, B. Driehuys, et al., Biological MRI using laser-polarized 129Xe, Nature 370 (1994), 199.

    Article  ADS  Google Scholar 

  36. J.R. MacFall, H.C. Charles, R.D. Black, et al., Human lung air spaces: potential for MRI with hyperpolarized 3He, Radiology 200 (1996), 553.

    Google Scholar 

  37. H.U. Kauczor, D. Hofmann, K.F. Kreitner, et al., Normal and abnormal pulmonary ventilation: Visualization at hyperpolarized 3He MRI, Radiology 201 (1996), 564.

    Google Scholar 

  38. G.K. Walters and W.M. Fairbank, Phase separation in 3He-4He solutions, Phys. Rev. 103 (1956), 262.

    Article  ADS  Google Scholar 

  39. A. Kastler, Méthodes optiques d’étude de la résonance magnétique, Physica, 17 (1951), 191.

    Article  ADS  Google Scholar 

  40. M.A. Bouchiat, T.R. Carver and C.M. Varnum, Nuclear Polarization in He3 Gas Induced by Optical Pumping and Dipolar Exchange, Phys. Rev. Lett. 5 (1960), 373.

    Article  ADS  Google Scholar 

  41. W. Happer, Optical Pumping, Rev. Mod. Phys. 44 (1972), 169.

    Article  ADS  Google Scholar 

  42. F.D. Colegrove, L.D. Schearer and G.K. Walters, Polarization of He3 gas by optical pumping, Phys. Rev. 132 (1963), 2561.

    Article  ADS  Google Scholar 

  43. T.G. Walker and W. Happer, Spin-exchange optical pumping of noble-gas nuclei, Rev. Mod. Phys. 69 (1997), 629.

    Article  ADS  Google Scholar 

  44. D. Bear, et al., Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser, Phys. Rev. Lett. 85 (2000), 5038 — erratum in Phys. Rev. Lett. 89, 209902.

    Article  ADS  Google Scholar 

  45. G.L. Jones, et al., Test of He-3-based neutron polarizers at NIST, Nuc. Instr. Meth. A 440 (2000), 772.

    Article  ADS  Google Scholar 

  46. T. Chupp and S. Swanson, Adv. At. Mol. Opt. Phys. 45 (2001), 51.

    Google Scholar 

  47. I.C. Ruset, S. Ketel and F.W. Hersman, Optical pumping system design for large production of hyperpolarized 129Xe, Phys. Rev. Lett. 96 (2006), 053002.

    Article  ADS  Google Scholar 

  48. W.C. Chen, T.R. Gentile, T.G. Walker, et al., Spin-exchange optical pumping of He-3 with Rb-K mixtures and pure K, Phys. Rev. A 75 (2007), 013416.

    Article  ADS  Google Scholar 

  49. P.J. Nacher and M. Leduc, Optical pumping in 3He with a laser, J. Phys. (Paris) 46 (1985), 2057.

    Google Scholar 

  50. G. Tastevin, S. Grot, E. Courtade, S. Bordais and P.-J. Nacher, A broadband ytterbium-doped tunable fiber laser for 3He optical pumping at 1083 nm, Applied Physics B 78 (2004), 145.

    Article  Google Scholar 

  51. M. Leduc, S.B. Crampton, P.J. Nacher and F. Laloe, Nuclear polarization of gaseous 3He by optical pumping, Nuclear Sci. App. 1 (1983), 1.

    Google Scholar 

  52. P.-J. Nacher, E. Courtade, M. Abboud, A. Sinatra, G. Tastevin and T. Dohnalik, Optical pumping of helium-3 at high pressure and magnetic field, Acta Phys. Polon. B 33 (2002), 2225. Online at http://hal.archives-ouvertes.fr/hal-00002223/

    ADS  Google Scholar 

  53. M. Abboud, A. Sinatra, X. Maitre, G. Tastevin and P.-J. Nacher, High nuclear polarization of 3He at low and high pressure by metastability exchange optical pumping at 1.5 Tesla, Europhys. Lett. 68 (2004), 480.

    Article  ADS  Google Scholar 

  54. A. Nikiel, T. Palasz, M. Suchanek, et al., Metastability exchange optical pumping of 3He at high pressure and high magnetic field for medical applications, Eur. Phys. J. Special Topics 144 (2007), 255.

    Article  ADS  Google Scholar 

  55. H.H. Mc Adams, Dynamic nuclear polarization of liquid 3He by optical pumping, Phys. Rev. 170 (1968), 276.

    Article  ADS  Google Scholar 

  56. R. Barbe, F. Laloe and J. Brossel, Very long nuclear 3He nuclear relaxation times at 4K using cryogenic coatings, Phys. Rev. Lett. 34 (1975), 1488.

    Article  ADS  Google Scholar 

  57. G. Tastevin, P.-J. Nacher, L. Wiesenfeld, M. Leduc and F. Laloe, Obtaining polarized liquid 3He from optically oriented gas, J. Phys. (Paris) 49 (1988), 1.

    Google Scholar 

  58. P.J. Nacher, G. Tastevin, M. Leduc, S.B. Crampton and F. Laloe, Spin rotation effects and spin waves in gaseous polarized 3He, J. Phys. Lett. (Paris) 45 (1984), L–441.

    Article  Google Scholar 

  59. M. Leduc, P.J. Nacher, D.S. Betts, J.M. Daniels, G. Tastevin and F. Laloe, Nuclear polarization and heat conduction changes in gaseous 3He, Europhys. Lett. 4 (1987), 59.

    Article  ADS  Google Scholar 

  60. M.E. Hayden, E. Baudin, G. Tastevin and P.-J. Nacher, NMR time-reversal as a probe of incipient turbulent spin dynamics, Phys. Rev. Lett. 99 (2007), 137602.

    Article  ADS  Google Scholar 

  61. R.S. Timsit, J.M. Daniels, E.I. Dennig, A.C.K. Kiang and A.D. May, An experiment to compressed polarized 3He gas, Bull. Am. Phys. Soc. 15 (1970), 761.

    Google Scholar 

  62. J.M. Daniels, L.D. Schearer, M. Leduc and P.-J. Nacher, Polarizing 3He nuclei with neodymium La1-x Ndx Mg Al11 O19 lasers, J.O.S.A. B 4 (1987), 1133.

    Article  Google Scholar 

  63. G. Eckert, W. Heil, M. Meyerhoff, et al., A dense polarized 3He target based on compression of optically pumped gas, Nucl. Instr. Meth. Phys. Res. A 320 (1992), 53.

    Article  ADS  Google Scholar 

  64. J. Becker, J. Bermuth, M. Ebert, et al., Interdisciplinary experiments with polarized He-3, Nuc. Instr. Meth. Phys. Res. A 402 (1998), 327.

    Article  ADS  Google Scholar 

  65. D. Rohe, P. Bartsch, D. Baumann, et al., Measurement of the neutron electric form factor Gen at 0.67 (GeV/c)2 via 3He→(e→,e’ n), Phys. Rev. Lett. 83 (1999), 4257.

    Article  ADS  Google Scholar 

  66. D.S. Hussey, D.R. Rich DR, A.S. Belov, et al., Polarized He-3 gas compression system using metastability-exchange optical pumping, Rev. Sci. Instr. 76 (2005), 053503.

    Article  ADS  Google Scholar 

  67. J. Choukeife, X. Maitre, P.J. Nacher and G. Tastevin, On-site production of hyper-polarised helium-3 gas for lung MRI, Abstracts ISSN 1524-6965 (2003), 1391.

    Google Scholar 

  68. K.H. Andersen, R. Chung, V. Guillard, et al., First results from Tyrex, the new polarized-He-3 filling station at ILL, Physica B 356 (2005), 103.

    Article  ADS  Google Scholar 

  69. E.J.R. van Beek, J. Schmiedeskamp, J.M. Wild, et al., Hyperpolarized 3-helium MR imaging of the lungs: testing the concept of a central production facility, Eur. Radiol. 13 (2003), 2583.

    Article  Google Scholar 

  70. M. Batz, S. Baessler, W. Heil, et al., He-3 spin filter for neutrons, J. Res. Natl. Inst. Stand. Technol. 110 (2005), 293.

    Google Scholar 

  71. A.K. Petoukhov, K.H. Andersen, D. Jullien, et al., Recent advances in polarised He-3 spin filters at the ILL, Physica B 385 (2006), 1146.

    Article  ADS  Google Scholar 

  72. J. Schmiedeskamp, W. Heil, E.W. Otten, et al., Paramagnetic relaxation of spin polarized He-3 at bare glass surfaces Part I, Eur. Phys. J. D 38 (2006), 427.

    Article  ADS  Google Scholar 

  73. A. Deninger, W. Heil, E.W. Otten, et al., Paramagnetic relaxation of spin polarized He-3 at coated glass walls Part II, Eur. Phys. J. D 38 (2006), 439.

    Article  ADS  Google Scholar 

  74. J. Schmiedeskamp, H.J. Elmers, W. Heil, et al., Relaxation of spin polarized He-3 by magnetized ferromagnetic contaminants Part III, Eur. Phys. J. D 38 (2006), 445.

    Article  ADS  Google Scholar 

  75. B. Saam, W. Happer and H. Middleton, Nuclear relaxation of 3He in the presence of O2, Phys. Rev. A 52 (1995), 862.

    Article  ADS  Google Scholar 

  76. L. de Rochefort, A. Vignaud, X. Maitre, et al., Influence of lung filling on T*2 values in human at 1.5 T with hyperpolarised 3 He, Abstracts ISSN 1545-4436 (2004), 2724.

    Google Scholar 

  77. E. Durand, G. Guillot, L. Darrasse, et al., CPMG measurements and ultrafast imaging in human lungs with hyperpolarized helium-3 at low field (0.1 T), Magn. Reson. Med. 47 (2002), 75.

    Article  Google Scholar 

  78. C.P. Bidinosti, J. Choukeife, G. Tastevin, A. Vignaud and P.-J. Nacher, MRI of the lung using hyperpolarized He-3 at very low magnetic field (3 mT), Magn. Reson. Mater. Phy. 16 (2004), 255.

    Article  Google Scholar 

  79. C.P. Bidinosti, J. Choukeife, P.-J. Nacher and G. Tastevin, In-vivo NMR of hyperpolarized 3He in the human lung at very low magnetic fields, J. Magn. Reson. 162 (2003), 122.

    Article  ADS  Google Scholar 

  80. R.W. Mair, M.I. Hrovat, S. Patz, et al., Orientation-dependent 3He lung imaging in an open access, very-low-field human MRI system, Magn. Reson. Med. 53 (2005), 745.

    Article  Google Scholar 

  81. A.M. Oros and N.J. Shah, Hyperpolarized xenon in NMR and MRI, Phys. Med. Biol. 49 (2004), R105.

    Article  Google Scholar 

  82. T. Stavngaard, L. Vejby Sogaard, J. Mortensen, et al., Hyperpolarised 3He MRI and 81 m Kr SPECT in chronic obstructive pulmonary disease, Eur. J. Nucl. Med. Mol. Imaging 32 (2005), 448.

    Article  Google Scholar 

  83. J.M. Wild, M.N.J. Paley, L. Kasuboski, et al., Dynamic radial projection MRI of inhaled hyperpolarized 3He gas, Magn. Reson. Med. 49 (2003), 991.

    Article  Google Scholar 

  84. E.J.R van Beek, J.M. Wild, H.U. Kauczor, et al., Functional MRI of the lung using hyperpolarized 3-helium gas, J. Magn. Reson. Imaging, 20 (2004), 540.

    Article  Google Scholar 

  85. F. Lehmann, B. Eberle, K. Markstaller, et al., Ein Auswerteprogramm zur Quantitativen Analyse von Messungen des Alveolären Sauerstoffpartialdrucks (paO2) mit der Sauerstoff sensitiven 3He-MR-Tomographie, Fortschr Roentgenstr 176 (2004), 1390.

    Article  Google Scholar 

  86. A.J. Deninger, B. Eberle, J. Bermuth, et al., Assessment of a single-acquisition imaging sequence for oxygen-sensitive 3He-MRI, Magn. Reson. Med. 47 (2002), 105114.

    Article  Google Scholar 

  87. M. Salerno, E.E. de Lange, T.A. Altes, et al., Emphysema: hyperpolarized helium 3 diffusion MR Imaging of the lungs compared with spirometric indexes — Initial experience, Radiology 222 (2002), 252.

    Article  Google Scholar 

  88. T.A. Altes, J. Mata, E.E. de Lange, J.R. Brookeman and J.P. Mugler III, Assessment of lung development using hyperpolarized helium-3 diffusion MR Imaging, J. Magn. Reson. Imaging 24 (2006), 1277.

    Article  Google Scholar 

  89. T.A. Altes, J. Mata, D.K. Froh, A. Paget-Brown, E.E. de Lange and J.P. Mugler, Abnormalities of lung structure in children with bronchopulmonary dysplasia as assessed by diffusion of hyperpolarized helium-3 MRI, Proc. Intl. Soc. Mag. Reson. Med. 14 (2006), 86.

    Google Scholar 

  90. I.R. Young, Significant events in the development of MRI, J. Magn. Reson. Imaging, 19 (2004), 525.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Nacher, PJ. (2009). Magnetic Resonance Imaging: From Spin Physics to Medical Diagnosis. In: Duplantier, B., Raimond, JM., Rivasseau, V. (eds) The Spin. Progress in Mathematical Physics, vol 55. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8799-0_6

Download citation

Publish with us

Policies and ethics