Topological Recursion and Symplectic Invariants

  • Bertrand Eynard
Part of the Progress in Mathematical Physics book series (PMP, volume 70)


We have seen, in almost all previous chapters, that symplectic invariants and topological recursion play an important role. They give the solution to Tutte’s recursion equation for maps, they give the formal expansion of various matrix integrals, including Kontsevich integral, and they also give the asymptotics of large maps.


Symplectic Invariants Topological Recursion Kontsevich Integral Formal Kind Spectral Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 12.
    S. Bergmann, Sur la fonction-noyau d’un domaine et ses applications dans la théorie des transformations pseudo-conformes. Memor. Sci. Math. 108 (1948)Google Scholar
  2. 13.
    S. Bergman, M. Schiffer, Kernel functions and conformal mapping. Compos. Math. 8, 205–249 (1951)MathSciNetzbMATHGoogle Scholar
  3. 15.
    M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311–428 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 17.
    G. Borot, B. Eynard, Geometry of spectral curves and all order dispersive integrable system. ArXiv e-prints (2011)Google Scholar
  5. 18.
    V. Bouchard, B. Eynard, Think globally, compute locally. J. High Energy Phys. 2, 143 (2013)MathSciNetCrossRefGoogle Scholar
  6. 30.
    B. Eynard, Topological expansion for the 1-hermitian matrix model correlation functions. J. High Energy Phys. 11, 31 (2004)MathSciNetCrossRefGoogle Scholar
  7. 34.
    B. Eynard, N. Orantin, Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1(2), 347–452 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 35.
    B. Eynard, N. Orantin, M. Mariño, Holomorphic anomaly and matrix models. J. High Energy Phys. 6, 58 (2007)MathSciNetCrossRefGoogle Scholar
  9. 36.
    H.M. Farkas, I. Kra, Riemann Surfaces (Springer, New York, 1992)CrossRefzbMATHGoogle Scholar
  10. 37.
    J.D. Fay, Theta Functions on Riemann Surfaces (Springer, New York, 1973)zbMATHGoogle Scholar
  11. 56.
    A. Kokotov, D. Korotkin, Tau-functions on hurwitz spaces. Math. Phys. Anal. Geom. 7(1), 47–96 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 68.
    D. Mumford, The Red Book of Varieties and Schemes: Includes the Michigan Lectures (1974) on Curves and Their Jacobians, vol. 1358 (Springer, New York, 1999)CrossRefzbMATHGoogle Scholar
  13. 78.
    H.E. Rauch, Weierstrass points, branch points, and moduli of riemann surfaces. Commun. Pure Appl. Math. 12(3), 543–560 (1959)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bertrand Eynard
    • 1
  1. 1.CEA Saclay Institut de Physique Théorique (IPHT)Gif sur YvetteFrance

Personalised recommendations