Formal Matrix Integrals

  • Bertrand Eynard
Part of the Progress in Mathematical Physics book series (PMP, volume 70)


In this chapter we introduce the notion of a formal matrix integral, which is very useful for combinatorics, as it turns out to be identical to the generating function of maps of Chap.  1


Euler Characteristic Formal Power Series Feynman Graph Loop Equation Symmetry Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 3.
    A.S. Alexandrov, A. Mironov, A. Morozov, Solving Virasoro constraints in matrix models. Fortschr. Phys. 53, 512–521 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 16.
    P. Bleher, A. Its, Random Matrix Models and Their Applications, vol. 40 (Cambridge university Press, Cambridge, 2001)zbMATHGoogle Scholar
  3. 25.
    P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, vol. 3 (American Mathematical Society, Providence, 2000)zbMATHGoogle Scholar
  4. 26.
    P. Deift, D. Gioev, Random Matrix Theory: Invariant Ensembles and Universality, vol. 18 (American Mathematical Society, Providence, 2009)zbMATHGoogle Scholar
  5. 31.
    B. Eynard, Formal matrix integrals and combinatorics of maps. ArXiv Mathematical Physics e-prints (2006)Google Scholar
  6. 39.
    P.J. Forrester, Log-Gases and Random Matrices (LMS-34) (Princeton University Press, Princeton, 2010)CrossRefzbMATHGoogle Scholar
  7. 40.
    P.D. Francesco, P. Ginsparg, J. Zinn-Justin, 2d gravity and random matrices. Phys. Rep. 254(1), 1–133 (1995)CrossRefGoogle Scholar
  8. 42.
    D.J. Gross, T. Piran, S. Weinberg, Two Dimensional Quantum Gravity and Random Surfaces (World Scientific, Singapore, 1992)Google Scholar
  9. 44.
    A. Guionnet, Large Random Matrices: Lectures on Macroscopic Asymptotics: Ecole d’Ete de Probabilites de Saint-Flour XXXVI-2006 (Springer, Berlin/Heidelberg, 2008)zbMATHGoogle Scholar
  10. 46.
    J.M. Harris, J.L. Hirst, M.J. Mossinghoff, Combinatorics and Graph Theory (Springer, New York, 2008)CrossRefzbMATHGoogle Scholar
  11. 48.
    G. ’t Hooft, A planar diagram theory for strong interactions. Nucl. Phys. B 72(3), 461–473 (1974)Google Scholar
  12. 54.
    É. Brezin, V. Kazakov, D. Serban, P. Wiegmann, A. Zabrodin (eds.), Applications of Random Matrices in Physics. Nato Science Series II, vol. 221 (Springer, Berlin, 2006)Google Scholar
  13. 63.
    M.L. Mehta, Random Matrices, vol. 142 (Academic, New York, 2004)zbMATHGoogle Scholar
  14. 64.
    A.A. Migdal, Loop equations and 1n expansion. Phys. Rep. 102(4), 199–290 (1983)CrossRefGoogle Scholar
  15. 74.
    G. Parisi, J.B. Zuber, E. Brezin, C. Itzykson, Planar diagrams. Commun. Math. Phys. 59, 35 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 81.
    T. Tao, Topics in Random Matrix Theory, vol. 132 (American Mathematical Society, Providence, 2012)zbMATHGoogle Scholar
  17. 86.
    G.C. Wick, The evaluation of the collision matrix. Phys. Rev. 80, 268–272 (1950)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bertrand Eynard
    • 1
  1. 1.CEA Saclay Institut de Physique Théorique (IPHT)Gif sur YvetteFrance

Personalised recommendations