Skip to main content

Real Integrability Conditions for the Nonuniform Exponential Stability of Evolution Families on Banach Spaces

  • Conference paper
  • First Online:
Inequalities and Applications

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 157))

Abstract

Let J be either ℝ or ℝ+ := [0,∞). We prove that an evolution family U = {U(t, s)}tsJ which satisfies some natural assumptions is non-uniformly exponentially stable if there exist a positive real number α and a nondecreasing function φ : ℝ+ → ℝ+ with φ(t) positive for all positive t and such that for each sJ, the following inequality

$$ \mathop {\sup }\limits_{t > s} \int_0^{t - s} {\varphi (e^{\alpha u} \left\| {U(s + u,s)x} \right\|)du = M_\varphi(s) < \infty } $$

holds true for all xX with ‖x‖ ≤ 1. We arrive at the same conclusion under the assumption that there exist three positive real numbers α, β and K such that for each tJ the inequality

$$ \left( {\int_J {\chi ( - \infty ,t](\tau )e^{ - q\alpha \tau } \parallel U(t,\tau )^* x^* \parallel } )d\tau } \right)^{\tfrac{1} {q}}\leqslant Ke^{ - \beta t} $$

holds true, for all x* ∈ X* with ‖x*‖ ≤ 1 and for some q ≥ 1.

Part of this article was done while the author visited the School of Mathematical Sciences, Governmental College University, Lahore, Pakistan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.A. Barbashin, Introduction in the theory of stability, Izd. Nauka, Moscow, 1967 (Russian).

    Google Scholar 

  2. C. Batty, J.K. Chill, Y. Tomilov, Strong stability of bounded evolution families and semigroups, J. Funct. Anal. 193 (2002), 116–139.

    Article  MathSciNet  Google Scholar 

  3. C. Buşe, On nonuniform exponential stability of evolutionary processes, Rend. Sem. Univ. Pol. Torino, 52(4) (1994), 395–406.

    MATH  Google Scholar 

  4. C. Buşe, Nonuniform exponential stability and Orlicz functions, Comm. Math. Prace Matematyczne, 36 (1996), 34–97.

    MathSciNet  MATH  Google Scholar 

  5. C. Buşe, Asymptotic stability of evolutors and normed functions spaces, Rend. Sem. Mat. Univ. Pol. Torino 55(2) (1997), 109–122.

    MathSciNet  MATH  Google Scholar 

  6. C. Buşe, S.S. Dragomir, A theorem of Rolewicz’s type in solid function spaces, Glasgow Math. Journal 44 (2002), 125–135.

    Article  MathSciNet  Google Scholar 

  7. C. Chicone, Yuri Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Amer. Math. Soc., Math. Surv. and Monographs 70 (1999).

    Google Scholar 

  8. S. Clark, Yu. Latushkin, S. Montgomery-Smith, and T. Randolph, Stability radius and internal versus external stability in Banach spaces: An evolution semigroup approach, SIAM J. Control and Optimization 38(200), 1757–1793.

    Google Scholar 

  9. Y.L. Daletkii, M.G. Krein, Stability of Solutions of Differential Equations in Banach Spaces, Izd. Nauka, Moskwa, 1970.

    Google Scholar 

  10. R. Datko, Uniform asymptotic stability of evolutionary processes in Banach space, SIAM J. Math. Analysis 3 (1973), 428–445.

    Article  MathSciNet  Google Scholar 

  11. E. Nakaguchi, S. Saito, A. Yagi, Exponential decay of solutions of linear evolution equations in a Banach space, Math. Japon. 44(1996), 469–481.

    MathSciNet  MATH  Google Scholar 

  12. Van Minh, Nguyen, F. Räbiger, and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line, Integral Equations Operator Theory 32 (1998), 332–353.

    Article  MathSciNet  Google Scholar 

  13. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, 1983.

    Google Scholar 

  14. S. Rolewicz, On uniform N-equistability, Journal of Math. Anal. Appl. 115 (1986), 434–441.

    Article  MathSciNet  Google Scholar 

  15. J.M.A.M. van Neerven, Exponential stability of operators and operator semigroups, Journal of Functional Analysis 130 (1995), 293–309.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Buşe, C. (2008). Real Integrability Conditions for the Nonuniform Exponential Stability of Evolution Families on Banach Spaces. In: Bandle, C., Losonczi, L., Gilányi, A., Páles, Z., Plum, M. (eds) Inequalities and Applications. International Series of Numerical Mathematics, vol 157. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-8773-0_4

Download citation

Publish with us

Policies and ethics