Skip to main content

Multiscale Brittle-Ductile Coupling and Genesis of Slow Earthquakes

  • Chapter
Earthquakes: Simulations, Sources and Tsunamis

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 1245 Accesses

Abstract

We present the first attempt to explain slow earthquakes as cascading thermal-mechanical instabilities. To attain this goal we investigate brittle-ductile coupled thermal-mechanical simulation on vastly different time scales. The largest scale model consists of a cross section of a randomly perturbed elasto-visco-plastic continental lithosphere on the order of 100×100 km scale with no other initial structures. The smallest scale model investigates a km-scale subsection of the large model and has a local resolution of 40×40 m. The model is subject to a constant extension velocity applied on either side. We assume a free top surface and with a zero tangential stress along the other boundaries. Extension is driven by velocity boundary conditions of 1 cm/a applied on either side of the model. This is the simplest boundary condition, and makes it an ideal starting point for understanding the behavior of a natural system with multiscale brittle-ductile coupling. Localization feedback is observed as faulting in the brittle upper crust and ductile shearing in an elasto-viscoplastic lower crust. In this process brittle faulting may rupture at seismogenic rates, e.g., at 102−103 ms−1, whereas viscous shear zones propagate at much slower rates, up to 3×10−9 ms−1. This sharp contrast in the strain rates leads to complex short-time-scale interactions at the brittle-ductile transition. We exploit the multiscale capabilities from our new simulations for understanding the underlying thermo-mechanics, spanning vastly different, time- and length-scales.

Published Online First: April 2, 2008

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, R.A. and Phillips, R.J. (2002), Time-dependent effects in elasto-visco-plastic models of loaded lithosphere, Geophys. J. Internat. 151(2), 612–621.

    Article  Google Scholar 

  • Bercovici, D. and Ricard, Y. (2003), Energetics of a two-phase model of lithospheric damage, shear localization and plate-boundary formation, Geophys. J. Internat. 152, 581–596.

    Article  Google Scholar 

  • Chery, J., Vilotte, J.P., and Daigniers, M. (1991), Thermomechanical evolution of a thinned continental lithosphere under compression: Implication for the Pyrenees, J. Geophys. Res. 96(B3), 4385–4412.

    Article  Google Scholar 

  • Chrysochoos, A. and Belmahjoub, F. (1992), Thermographic analysis of thermomechanical couplings, Archives Mechanics 44(1), 55–68.

    Google Scholar 

  • Chrysochoos, A. and Dupre, J.C. (1992), An infrared set-up for continuum thermomechanics, J. Societé Française des Thermiciens 27, 129.

    Google Scholar 

  • Collins, I.F. (2005), Elastic/plastic models for soils and sands, Internat. J. Mech. Sci. 47(4–5 Spec. Issue.), 493–508.

    Article  Google Scholar 

  • Collins, I.F. and Hilder, T. (2002), A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests, Internal. J. Num. Analyti. Methods in Geomech. 26(13), 1313–1347.

    Article  Google Scholar 

  • Dieterich, J.H. (1979a), Modeling of rock friction. I. Experimental results and constitutive equations, J. Geophys. Res. 84(NB5), 2161–2168.

    Article  Google Scholar 

  • Dieterich, J.H. (1979b), Modeling of rock friction. 2. Simulation of pre-seismic slip, J. Geophys. Res. 84(NB), 2169–2175.

    Article  Google Scholar 

  • Emmerson, B. and McKenzie, M. (2007), Thermal structure and seismicity of subducted lithosphere, Physics of Earth and Plane. Inter. 163(1–4), 191–208.

    Article  Google Scholar 

  • Gerbault, M., Henrys, S., and Davey, F. (2003), Numerical models of lithospheric deformation forming the Southern Alps of New Zealand, J. Geophys. Res. B: Solid Earth 108(7).

    Google Scholar 

  • Goetze, C. and Evans, B. (1979), Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics, Geophys. J. Roy. Astron. Soc. 59, 463–478.

    Google Scholar 

  • Hirth, G. and Kohlstedt, D. (2004), Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In (J. Eiler, ed.), The Subduction Factory Geophysical Monograph, Am. Geophys. Union, Washington, pp. 83–105.

    Google Scholar 

  • Hirth, G., Teyssier, C., and Dunlap, W.J. (2001), An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks, Internal. J. Earth Sci. 90(1), 77–87.

    Article  Google Scholar 

  • Ide, S., Beroza, G.C., Shelly, D.R., and Uchide, T. (2007), A scaling law for slow earthquakes, Nature 447(7140), 76–79.

    Article  Google Scholar 

  • Jordan, T. (1991), Low-frequency characteristics of slow earthquakes and their implications for near-field monitoring of precursory phenomena, Seismol. Res. Lett. 62 (1), 40.

    Google Scholar 

  • Kameyama, C., Yuen, D.A., and Karato, S. (1999), Thermal-mechanical effects of low temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone, Earth Planet. Sci. Lett. 168, 159–162.

    Article  Google Scholar 

  • Kelemen, P. and Hirth, G. (2007), A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle, Nature 446, 787–790.

    Article  Google Scholar 

  • Kohlstedt, D.L., Evans, B., and Mackwell, S.J. (1995), Strength of the lithosphere: Constraints imposed by laboratory measurements, J. Geophy. Res. 100 (B9), 17587–17602.

    Article  Google Scholar 

  • Lyakhovsky, V., Ben-Zion, Y., and Agnon, A. (2001), Earthquake cycle, fault zones, and seismicity patterns in a rheologically layered lithosphere, J. Geophys. Res.-Sol. Earth 106 (B3), 4103–4120.

    Article  Google Scholar 

  • Mancktelow, N.S. (2006), How ductile are ductile shear zones? Geology 34 (5), 345–348.

    Article  Google Scholar 

  • Ord, A., Hobbs, B.E., and Regenauer-Lieb, K. (2004), A smeared seismicity constitutive model, Earth, Planets and Space 56 (12), 1121–1133.

    Google Scholar 

  • Pfluke, J. (1978), Slow earthquakes and very slow earthquakes. In M.P.U.S. Geol. Surv., Calif., United States (USA) (ed.). Open-File Report — U.S. Geological Survey, pp. 447–468.

    Google Scholar 

  • Regenauer-Lieb, K., Weinberg, R., and Rosenbaum, G. (2006), The effect of energy feedbacks on continental strength, Nature 442, 67–70.

    Article  Google Scholar 

  • Regenauer-Lieb, K. and Yuen, D. (1998), Rapid conversion of elastic energy into shear heating during incipient necking of the lithosphere, Geophys. Res. Lett. 25 (14), 2737–2740.

    Article  Google Scholar 

  • Regenauer-Lieb, K. and Yuen, D. (2006), Quartz Rheology and short time-scale crustal instabilities, Pure Appl. Geophys. 163 (9), 1915–1932.

    Article  Google Scholar 

  • Regenauer-Lieb, K. and Yuen, D.A. (2003), Modeling shear zones in geological and planetary sciences: solid-and fluid-thermal-mechanical approaches, Earth Sci. Rev. 63, 295–349.

    Article  Google Scholar 

  • Regenauer-Lieb, K. and Yuen, D.A. (2004), Positive feedback of interacting ductile faults from coupling of equation of state, rheology and thermal-mechanics, Phys. Earth Plane. Inter. 142 (1–2), 113–135.

    Article  Google Scholar 

  • Rosenbaum, G., Regenauer-Lieb, K., and Weinberg, R.F. (2005) Continental extension: From core complexes to rigid block faulting, Geology 33 (7), 609–612.

    Article  Google Scholar 

  • Sacks, I., Suyehiro, S., Linde, A., and Snoke, J. (1978), Slow earthquakes and stress redistribution, Nature 275, 599–602.

    Article  Google Scholar 

  • Shelton, G.L., Tullis, J., and Tullis, T. (1981), Experimental high temperature and high pressure faults, Geophys. Res. Lett. 8 (1), 55–58.

    Article  Google Scholar 

  • Stein, S. and Okal, E. (2005a), Ultra-long period seismic moment of the great December 26, 2004 Sumatra earthquake and implications for the slip process.

    Google Scholar 

  • Stein, S. and Okal, E.A. (2005b), Speed and size of the Sumatra earthquake, Nature 434 (7033), 581.

    Article  Google Scholar 

  • Wijns, C., Weinberg, R., Gessner, K., and Moresi, L. (2005), Mode of crustal extension determined by rheological layering, Earth Plane. Sci. Lett. 236 (1–2), 120.

    Article  Google Scholar 

  • Ziegler, H., An Introduction to Thermomechanics (North-Holland Publishing Company, Amsterdam, 1983.) 358 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Regenauer-Lieb, K., Yuen, D.A. (2008). Multiscale Brittle-Ductile Coupling and Genesis of Slow Earthquakes. In: Tiampo, K.F., Weatherley, D.K., Weinstein, S.A. (eds) Earthquakes: Simulations, Sources and Tsunamis . Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8757-0_5

Download citation

Publish with us

Policies and ethics