Skip to main content

An Efficient System for Creating Synthetic InSAR Images from Simulations

  • Chapter
  • 1285 Accesses

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

In this work we visualize tsunami and earthquake simulation results with graphics hardware acceleration. The rapid improvement in the computational power of graphics hardware and its programmability has made general computation on Graphics Processing Units (GPUs) very compelling. We generate Synthetic InSAR images using GPUs. Interference phenomena have formed the underlying theory for Interferometric Synthetic Aperture Radar (InSAR) in unveiling dynamical Earth movements. In our approach light path differences are defined by the surface values to be visualized. These path differences then modulate the lighting intensity to generate the interference patterns. We can interactively visualize surface deformation patterns by leveraging the computational power of GPUs. Our visualization method is applied to simulations of rupture fault displacements during the tsunamogenic earthquake events, which are vital to understanding the subsequent wave propagation. We also integrate the visualization results into Google Earth virtual globe to provide the geological context of the visualized regions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammon, C.J., Jr, Jt, C., Thio, H-K., Robinson, D., Ni, S., Hjorleifsdottir, V., Kanamori, H., Lay, H., Das, S., Helmberger, D., Ichinose, G., Polet, J., and Wald, D. (2005), Rupture Process of the 2004 Sumatra-Andaman Earthquake, Science 308, 1133–1139.

    Article  Google Scholar 

  • ATI Technologies Inc. (2006). http://www.ati.com.

    Google Scholar 

  • Buck. I. (2004), GPGPU: General-Purpose Computation on Graphics Hardware-GPU Computation Strategies and Tricks. ACM SIGGRAPH Course Notes (Aug. 2004).

    Google Scholar 

  • Bilham, R. (2005), A flying start, then a slow slip, Science 308, 1126–1127.

    Article  Google Scholar 

  • Butler, D. (2006), Virtual globes: The web-wide world, Nature 439, 776–778.

    Article  Google Scholar 

  • Deering, M., Winner, S., Schediwy, B., Duffy, C., and Hunt, N., The triangle processor and normal vector shader: A VLSI system for high performance graphics. In SIGGRAPH’88 (New York, NY, USA. ACM Press 1988) pp. 21–30.

    Google Scholar 

  • Dias, M.L. (1991), Ray tracing interference color, IEEE Computer Graphics and Applications 11 (2), 54–60, March/April.

    Article  Google Scholar 

  • Google Earth (2007), http://earth.google.com/.

    Google Scholar 

  • Condek, J.S., Mever, G.W., and Newman, J.G., Wavelength dependent reflectance functions, in SIGGRAPH’94 (New York, NY, USA, ACM Press 1994) pp. 213–220.

    Google Scholar 

  • GPGPU (2006), General-purpose computation on GPUs. http://www.gpgpu.org.

    Google Scholar 

  • Guenther, R.D., Modern Optics (Wiley 1990).

    Google Scholar 

  • Krikke, J. (2005), Near Real-time tsunami computer simulations within reach, IEEE Computer Graphics and Applications 25 (5), 16–21, Sept/Oct.

    Article  Google Scholar 

  • Lay, T., Kanamori, H., Ammon, C.J., Nettles, M., Ward, S.N., Aster, R.C., Beck, S.L., Bilek, S.L., Brudzinski, M.R., Butler, R., DeShon, H.R., Ekstrom, G., Satake, K., and Sipkin, S. (2005), The Great Sumatra-Andaman Earthquake of 26 December 2004, Science 308, 1127–1133.

    Article  Google Scholar 

  • Liu, Y., Santos, A., Wang, S.M., Shi, Y., Liu, H., and Yuen, D.A. (2007), Tsunami hazards along Chinese coast from potential earthquakes in South China Sea, Phys. Earth Planet. Inter. (PEPI) 163, 233–244.

    Article  Google Scholar 

  • Mark, W.R., Glanville, R.S., Akeley, K., and Kilgard, M.J., Cg: A System for Programming Graphics Hardware in a C-like Language. In SIGGRAPH’02 (New York, NY, USA, ACM press 2002) pp. 896–907.

    Google Scholar 

  • Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., and Rabaute, T. (1993), The displacement field of the Landers earthquake mapped by radar interferometry, Nature 364, 138–142.

    Article  Google Scholar 

  • Molnar, S., Eyles, J., and Poulton, J.., Pixelflow: High-Speed Rendering Using Image Composition. In SIGGRAPH’92 (New York, NY, USA, ACM Press 1992) pp. 231–240.

    Google Scholar 

  • Nvidia Corp. (2004), Deferred Shading, http://developer.nvidia.com/.

    Google Scholar 

  • Nvidia Corp. (2006), http://www.nvidia.com.

    Google Scholar 

  • Nourbakhsh, I., Sargent, R., Wright, A., Cramer, K., McClendon, B., and Jones, M. (2006), Mapping disaster zones, Nature 439, 787–788.

    Article  Google Scholar 

  • Okada, Y. (1992), Internal Deformation Due to Shear and Tensile Faults in a Half-space. Bulletin of the Seismological Society of America, 82 (2), 1018–1040.

    Google Scholar 

  • OpenGL Shading Language (2006), http://www.opengl.org/docum entation/glsl/.

    Google Scholar 

  • Park, J., Song, T.A., Tromp, J., Okal, E., Stein, S., Roult, G., Clevede, E., Laske, G., Kanamori, H., Davis, P., Berger, J., Braitenberg, C., van Camp, M., Lei, X, Sun, H., Xu, H., and Rosat, S. (2005), Earth’s free oscillations excited by the 26 December 2004 Sumatra-Andaman Earthquake, Science 308, 1139–1144.

    Article  Google Scholar 

  • Shishkovtsov, O., Chapter 9. Deferred shading in STALKER. In GPU Gems II: Programming Techniques for High-Performance Graphics and General-Purpose Computation (Addison Wesley, 2nd edition 2005) pp. 143–545.

    Google Scholar 

  • Smits, B.E. and Meyer, G. (1994), Newton’s Colors: Simulating Interference Phenomena in Realistic Image Synthesis. In Proc. Eurographics Workshop on Photosimulation, Realism and Physics in Computer Graphics, pp. 185–194.

    Google Scholar 

  • Stein, S., and Okal, E. (2005), Seismology: Speed and size of the Sumatra earthquake, Nature 434, 581–582.

    Article  Google Scholar 

  • Subarya, C., Chlieh, M., Prawirodirdjo, L. Avouac, J-P., Bock, Y., Sieh, K., Meltzner, A.J., Natawidjaja, D.H., and McCaffrey, R. (2006), Plate-boundary deformation associated with the Great Sumatra-Andaman earthquake. Nature 440, 46–51.

    Article  Google Scholar 

  • Sun, Y., Fracchia, F.D., Calvert, T.W., and Drew, M.S. (1999), Deriving spectra from colors and rendering light interference, IEEE Computer Graphics and Applications 19 (4), 61–67.

    Article  Google Scholar 

  • Titov, V., Rabinovich, A.B., Mofjeld, H.O., Thomson, R.E., and Gonzalez, F.I. (2005), The global reach of the 26 December 2004 Sumatra tsunami, Science 309, 2045–2048.

    Article  Google Scholar 

  • USAID (2006), http://www.usaid.gov/locations/asia near east/tsunami/trm.ht.ml.

    Google Scholar 

  • van Puymbroeck, N., Michel, R., Binet, R., Avouac, J.P., and Taboury, J. (2000), Measuring earthquakes from optical satellite images, Appl. Optics Inform. Processing 39 (23), 3486–3494.

    Google Scholar 

  • Vigny, C., Simons, W.J., Abu, S., Bamphenyu, R., Satirapod, C., Choosakul, N., Subarya, C., Socquet, A., Omar, K., Abidin, H.Z., and Ambrosius, B.A.C. (2005), Insight into the 2004 Sumatra-Andaman earthquake from GPS measurements in Southeast Asia. Nature 436, 201–206.

    Article  Google Scholar 

  • Wang, R., Lorenzo-Martin, R., and Roth, F. (2006), PSGRN/PSCMP — A new code for calculating co-and post-seismic deformation, Geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comp. Geosci., 32 (4), 527–541.

    Article  Google Scholar 

  • Ward, S.N. (2006), http://es.uese.edu/ ward/.

    Google Scholar 

  • West, M., Sachez, J.J., and McNutt, S.R. (2005), Periodically triggered seismicity at Mount Wrangell, Alaska, after the Sumatra earthquake, Science 308, 1144–1146.

    Article  Google Scholar 

  • Young, T. (1802), A Syllabus of A Course of Lectures on Natural and Experimental Philosophy, London: Royal Institution.

    Google Scholar 

  • Young, T. (1807), A Course of Lectures on Natural Philosophy and the Mechanical Arts, London: J. Johnson.

    Google Scholar 

  • Yuan, X., Liu, Y., Chen, B., Yuen, D.A., and Pergler, T. (2007), Visualization of high dynamic range data in geosciences, Phys. Earth Planet. Inter. (PEPI) 163, 312–320.

    Article  Google Scholar 

  • Yuan, X., Nguyen, M.X., Chen, B., and Porter, D.H. (2005), High dynamic range volume visualization, Proc. IEEE Visualization 2005, pp. 327–334.

    Google Scholar 

  • Yuan, X., Nguyen, M.X., Chen, B., and Porter, D.H. (2006), HDR VolVis: High dynamic range volume visualization. IEEE Transact. Visualization and Computer Graphics 12 (4), 433–445.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Yuan, X., Liu, Y., Yuen, D.A., Chen, B., Pergler, T., Shi, Y. (2008). An Efficient System for Creating Synthetic InSAR Images from Simulations. In: Tiampo, K.F., Weatherley, D.K., Weinstein, S.A. (eds) Earthquakes: Simulations, Sources and Tsunamis . Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8757-0_13

Download citation

Publish with us

Policies and ethics