Abstract
We provide a detailed recursive construction of the Ablowitz-Ladik (AL) hierarchy and its zero-curvature formalism. The two-coefficient AL hierarchy under investigation can be considered a complexified version of the discrete nonlinear Schrödinger equation and its hierarchy of nonlinear evolution equations.
Specifically, we discuss in detail the stationary. Ablowitz-Ladik formalism in connection with the underlying hyperelliptic curve and the stationary Baker-Akhiezer function and separately the corresponding time-dependent Ablowitz-Ladik formalism
Research supported in part by the Research Council of Norway, the US National Science Foundation under Grant No. DMS-0405526, and the Austrian Science Fund (FWF) under Grant No. Y330.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M.J. Ablowitz. Nonlinear evolution equations—continuous and discrete. SIAM Rev. 19:663–684, 1977.
M.J. Ablowitz and P.A. Clarkson. Solitons. Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge, 1991.
M.J. Ablowitz and J.F. Ladik. Nonlinear differential-difference equations. J. Math. Phys. 16:598–603, 1975.
M.J. Ablowitz and J.F. Ladik. Nonlinear differential-difference, equations and Fourier analysis. J. Math. Phys. 17:1011–1018, 1976.
M.J. Ablowitz and J.F. Ladik. A nonlinear difference scheme and inverse scattering. Studies Appl. Math. 55:213–229, 1976.
M.J. Ablowitz and J.F. Ladik. On the solution of a class of non linear partial difference equations. Studies Appl. Math. 57:1–12, 1977.
M.J. Ablowitz, B. Prinari, and A.D. Trubatch., Discrete and Continuous Nonlinear Schrödinger Systems. London Mathematical Society Lecture Note Series Vol. 302, Cambridge University Press, Cambridge, 2004.
S. Ahmad and A. Roy Chowdhury. On the quasi-periodic solutions to the discrete non-linear Schrödinger equation. J. Phys. A 20:293–303, 1987.
S. Ahmad and A. Roy Chowdhury. The quasi-periodic solutions to the discrete nonlinear Schrödinger equation. J. Math. Phys. 28:134–1137, 1987.
G.S. Ammar and W.B. Gragg. Schur flows for orthogonal Hessenberg matrices. Hamiltonian and Gradient. Flows, Algorithms and Control, A. Bloch (ed.), Fields Inst. Commun., Vol. 3, Amer. Math. Soc., Providence, RI, 1994, pp. 27–34.
G. Baxter. Polynomials defined by a difference system. Bull. Amer. Math. Soc. 66: 187–190, 1960.
G. Baxter. Polynomials defined by a difference system. J. Math. Anal. Appl. 2:223–263, 1961.
M. Bertola and M. Gekhtman. Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions. Constr. Approx. 26: 383–430, 2007.
N.N. Bogolyubov, A.K. Prikarpatskii, and V.G. Samoilenko. Discrete periodic problem for the modified non linear Korteweg-de Vries equation., Sov. Phys. Dokl. 26:490–492, 1981.
N.N. Bogolyubov and A.K. Prikarpatskii. The inverse periodic problem for a discrete approximation of a nonlinear Schrödinger equation. Sov. Phys. Dokl. 27:113–116, 1982.
W. Bulla, F. Gesztesy, H. Holden, and G. Teschl. Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchy. Mem. Amer. Math. Soc. no. 641, 135:1–79, 1998.
S.-C. Chiu and J.F. Ladik. Generating exactly soluble nonlinear discrete evolution equations by a generalized Wronskian technique. J. Math. Phys. 18:690–700, 1977.
K.W. Chow, R. Conte, and N. Xu. Analytic doubly periodic wave patterns for the integrable discrete nonlinear Schrödinger (Ablowitz-Ladik) model. Physics Letters A 349:422–429, 2006.
A.K. Common. A solution of the initial value problem for half-infinite integrable systems. Inverse Problems 8:393–408, 1992.
P. Deift. Riemann-Hilbert methods in the theory of orthogonal polynomials. Spectral Theory and Mathematical Physics: A Festschrift in Honor of, Barry Simon’s 60th Birthday. Ergodic Schrödinger Operators, Singular Spectrum, Orthogonal Polynomials, and Inverse Spectral Theory, F. Gesztesy, P. Deift, C. Galvez, P. Perry, and W. Schlag (eds), Proceedings of Symposia in Pure Mathematics, Vol. 76/2, Amer. Math. Soc., Providence, RI, 2007, pp. 715–740.
H.-Y. Ding, Y.-P. Sun, and X.-X. Xu. A hierarchy of nonlinear lattice soliton equations, its integrable coupling systems and infinitely many conservation laws. Chaos, Solitons and Fractals 30:227–234, 2006.
A. Doliwa and P.M. Santini. Integrable dynamics of a discrete curve and the Ablowitz-Ladik hierarchy. J. Math. Phys. 36:1259–1273, 1995.
N.M. Ercolani and G.I. Lozano. A bi-Hamiltonian structure for the integrable, discrete non-linear Schrödinger system. Physica D 218:105–121, 2006.
L. Faybusovich and M. Gekhtman. On Schur flows. J. Phys. A 32:4671–4680, 1999.
L. Faybusovich and M. Gekhtman. Elementary Toda orbits and integrable lattices. Inverse Probl. 41:2905–2921, 2000.
X. Geng. Darboux transformation of the discrete Ablowitz-Ladik eigenvalue problem. Acta Math. Sci. 9:21–26, 1989.
X. Geng, H.H. Dai, and C. Cao. Algebro-geometric constructions of the discrete Ablowitz-Ladik flows and applications. J. Math. Phys. 44:4573–4588, 2003.
J.S. Geronimo, F. Gesztesy, and H. Holden. Algebro-geometric solutions of the Baxter-Szegö difference equation. Commun. Math. Phys. 258:149–177, 2005.
F. Gesztesy and H. Holden. Soliton Equations and Their Algebro-Geometric Solutions. Volume I: (1+1)-Dimensional Continuous Models. Cambridge Studies in Advanced Mathematics, Vol. 79, Cambridge University Press, Cambridge, 2003.
F. Gesztesy, H. Holden, J. Michor, and G. Teschl. Soliton Equations and Their Algebro-Geometric Solutions. Volume II: (1+1)-Dimensional Discrete Models. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, to appear.
F. Gesztesy, H. Holden, J. Michor, and G. Teschl. Algebro-geometric finite-band solutions of the Ablowitz-Ladik hierarchy. Int. Math. Res. Notices, 2007: 1–55, rnm082.
F. Gesztesy, H. Holden, J. Michor, and G. Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy, arXivanlin/07063370.
F. Gesztesy, H. Holden, J. Michor, and G. Teschl. Local conservation laws and the Hamiltonian formalism for the Ablowitz-Ladik hierarchy. Stud. Appl. Math. 120:361–423, 2008.
F. Gesztesy and M. Zinchenko. Weyl-Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle. J. Approx. Th. 139:172–213, 2006.
F. Gesztesy and M. Zinchenko. A Borg-type theorem associated with orthogonal polynomials on the unit circle. J. London Math. Soc. 74:757–777, 2006.
L. Golinskii. Schur flows and orthogonal polynomials on the unit circle. Sbornik Math. 197:1145–1165, 2006.
R. Killip and I. Nenciu. CMV; The unitary analogue of Jacobi matrices. Commun. Pure Appl. Math. 59:1–41, 2006.
L.-C. Li. Some remarks on CMV matrices and dressing orbits. Int. Math. Res. Notices 40:2437–2446, 2005.
P.D. Miller. Macroscopic behavior in the Ablowitz-Ladik equations. Nonlinear Evolution Equations & Dynamical Systems V.G. Makhankov, A.R. Bishop, and D.D. Holm (eds.), World Scientific, Singapore, 1995, pp. 158–167.
P.D. Miller, N.M. Ercolani, I.M. Krichever, and C.D. Levermore. Finite genus solutions to the Ablowitz-Ladik equations. Comm. Pure Appl. Math. 48:1369–1440, 1995.
A. Mukaihira and Y. Nakamura. Schur flow for orthogonal polynomials on the unit circle and its integrable discretization. J. Comput. Appl. Math. 139:75–94, 2002.
I. Nenciu. Lax Pairs for the Ablowitz-Ladik System via Orthogonal Polynomials on the Unit Circle. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 2005.
I. Nenciu. Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle. Int. Math. Res. Notices 11:647–686, 2005.
I. Nenciu. CMV matrices in random matrix theory and integrable systems: a survey. J. Phys. A 39:8811–8822, 2006.
R.J. Schilling. A systematic approach to the soliton equations of a discrete eigen value problem. J. Math. Phys. 30:1487–1501, 1989.
B. Simon. Analogs of the m-function in the theory of orthogonal polynomials on the unit circle. J. Comp. Appl. Math. 171:411–424, 2004.
B. Simon. Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, Part 2: Spectral Theory, AMS Colloquium Publication Series, Vol. 54, Amer. Math. Soc., Providence, R.I., 2005.
B. Simon. OPUC on one foot Bull. Amer. Math. Soc. 42:431–460, 2005.
B. Simon. CMV matrices: Five years after J. Comp. Appl. Math. 208:120–154, 2007.
B. Simon. Zeros of OPUC and long time asymptotics of Schur and related flows. Inverse Probl. Imaging 1:189–215, 2007.
K.M. Tamizhmani and Wen-Xiu Ma. Master symmetries from Lax operators for certain lattice solution hierarchies. J. Phys. Soc. Japan 69:351–361, 2000.
G. Teschl. Jacobi Operators and Completely Integrable Nonlinear Lattices. Math. Surveys Monographs, Vol. 72, Amer. Math. Soc., Providence, R.I., 2000.
K.L. Vaninsky. An additional Gibbs’ state for the cubic Schrödinger equation on the circle. Comm. Pure Appl. Math. 54:537–582, 2001.
V.E. Vekslerchik. Finite genus solutions for the Ablowitz-Ladik hierarchy. J. Phys. A 32:4983–4994, 1999.
V.E. Vekslerchik. Functional representation of the Ablowitz-Ladik hierarchy. II J. Nonlin. Math. Phys. 9:157–180, 2002.
V.E. Vekslerchik. Implementation of the Bäcklund transformations for the Ablowitz-Ladik hierarchy. J. Phys. A 39:6933–6953, 2006.
V.E. Vekslerchik and V.V. Konotop. Discrete nonlinear Schrödinger equation under non-vanishing boundary conditions. Inverse Problems 8:889–909, 1992.
Y. Zeng and S. Rauch-Wojciechowski. Restricted flows of the Ablowitz-Ladik hierarchy and their continuous limits. J. Phys. A 28:113–134, 1995.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Birkhäuser Verlag Basel/Switzerland
About this paper
Cite this paper
Gesztesy, F., Holden, H., Michor, J., Teschl, G. (2008). The Ablowitz-Ladik Hierarchy Revisited. In: Janas, J., Kurasov, P., Naboko, S., Laptev, A., Stolz, G. (eds) Methods of Spectral Analysis in Mathematical Physics. Operator Theory: Advances and Applications, vol 186. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8755-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-7643-8755-6_8
Publisher Name: Birkhäuser Basel
Print ISBN: 978-3-7643-8754-9
Online ISBN: 978-3-7643-8755-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)