Skip to main content

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 186))

  • 992 Accesses

Abstract

We provide a detailed recursive construction of the Ablowitz-Ladik (AL) hierarchy and its zero-curvature formalism. The two-coefficient AL hierarchy under investigation can be considered a complexified version of the discrete nonlinear Schrödinger equation and its hierarchy of nonlinear evolution equations.

Specifically, we discuss in detail the stationary. Ablowitz-Ladik formalism in connection with the underlying hyperelliptic curve and the stationary Baker-Akhiezer function and separately the corresponding time-dependent Ablowitz-Ladik formalism

Research supported in part by the Research Council of Norway, the US National Science Foundation under Grant No. DMS-0405526, and the Austrian Science Fund (FWF) under Grant No. Y330.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.J. Ablowitz. Nonlinear evolution equations—continuous and discrete. SIAM Rev. 19:663–684, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  2. M.J. Ablowitz and P.A. Clarkson. Solitons. Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge, 1991.

    MATH  Google Scholar 

  3. M.J. Ablowitz and J.F. Ladik. Nonlinear differential-difference equations. J. Math. Phys. 16:598–603, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  4. M.J. Ablowitz and J.F. Ladik. Nonlinear differential-difference, equations and Fourier analysis. J. Math. Phys. 17:1011–1018, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  5. M.J. Ablowitz and J.F. Ladik. A nonlinear difference scheme and inverse scattering. Studies Appl. Math. 55:213–229, 1976.

    MathSciNet  Google Scholar 

  6. M.J. Ablowitz and J.F. Ladik. On the solution of a class of non linear partial difference equations. Studies Appl. Math. 57:1–12, 1977.

    MathSciNet  Google Scholar 

  7. M.J. Ablowitz, B. Prinari, and A.D. Trubatch., Discrete and Continuous Nonlinear Schrödinger Systems. London Mathematical Society Lecture Note Series Vol. 302, Cambridge University Press, Cambridge, 2004.

    MATH  Google Scholar 

  8. S. Ahmad and A. Roy Chowdhury. On the quasi-periodic solutions to the discrete non-linear Schrödinger equation. J. Phys. A 20:293–303, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Ahmad and A. Roy Chowdhury. The quasi-periodic solutions to the discrete nonlinear Schrödinger equation. J. Math. Phys. 28:134–1137, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  10. G.S. Ammar and W.B. Gragg. Schur flows for orthogonal Hessenberg matrices. Hamiltonian and Gradient. Flows, Algorithms and Control, A. Bloch (ed.), Fields Inst. Commun., Vol. 3, Amer. Math. Soc., Providence, RI, 1994, pp. 27–34.

    Google Scholar 

  11. G. Baxter. Polynomials defined by a difference system. Bull. Amer. Math. Soc. 66: 187–190, 1960.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Baxter. Polynomials defined by a difference system. J. Math. Anal. Appl. 2:223–263, 1961.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Bertola and M. Gekhtman. Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions. Constr. Approx. 26: 383–430, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  14. N.N. Bogolyubov, A.K. Prikarpatskii, and V.G. Samoilenko. Discrete periodic problem for the modified non linear Korteweg-de Vries equation., Sov. Phys. Dokl. 26:490–492, 1981.

    MATH  Google Scholar 

  15. N.N. Bogolyubov and A.K. Prikarpatskii. The inverse periodic problem for a discrete approximation of a nonlinear Schrödinger equation. Sov. Phys. Dokl. 27:113–116, 1982.

    MATH  Google Scholar 

  16. W. Bulla, F. Gesztesy, H. Holden, and G. Teschl. Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchy. Mem. Amer. Math. Soc. no. 641, 135:1–79, 1998.

    Google Scholar 

  17. S.-C. Chiu and J.F. Ladik. Generating exactly soluble nonlinear discrete evolution equations by a generalized Wronskian technique. J. Math. Phys. 18:690–700, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  18. K.W. Chow, R. Conte, and N. Xu. Analytic doubly periodic wave patterns for the integrable discrete nonlinear Schrödinger (Ablowitz-Ladik) model. Physics Letters A 349:422–429, 2006.

    Article  Google Scholar 

  19. A.K. Common. A solution of the initial value problem for half-infinite integrable systems. Inverse Problems 8:393–408, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  20. P. Deift. Riemann-Hilbert methods in the theory of orthogonal polynomials. Spectral Theory and Mathematical Physics: A Festschrift in Honor of, Barry Simon’s 60th Birthday. Ergodic Schrödinger Operators, Singular Spectrum, Orthogonal Polynomials, and Inverse Spectral Theory, F. Gesztesy, P. Deift, C. Galvez, P. Perry, and W. Schlag (eds), Proceedings of Symposia in Pure Mathematics, Vol. 76/2, Amer. Math. Soc., Providence, RI, 2007, pp. 715–740.

    Google Scholar 

  21. H.-Y. Ding, Y.-P. Sun, and X.-X. Xu. A hierarchy of nonlinear lattice soliton equations, its integrable coupling systems and infinitely many conservation laws. Chaos, Solitons and Fractals 30:227–234, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Doliwa and P.M. Santini. Integrable dynamics of a discrete curve and the Ablowitz-Ladik hierarchy. J. Math. Phys. 36:1259–1273, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  23. N.M. Ercolani and G.I. Lozano. A bi-Hamiltonian structure for the integrable, discrete non-linear Schrödinger system. Physica D 218:105–121, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  24. L. Faybusovich and M. Gekhtman. On Schur flows. J. Phys. A 32:4671–4680, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Faybusovich and M. Gekhtman. Elementary Toda orbits and integrable lattices. Inverse Probl. 41:2905–2921, 2000.

    MATH  MathSciNet  Google Scholar 

  26. X. Geng. Darboux transformation of the discrete Ablowitz-Ladik eigenvalue problem. Acta Math. Sci. 9:21–26, 1989.

    MATH  MathSciNet  Google Scholar 

  27. X. Geng, H.H. Dai, and C. Cao. Algebro-geometric constructions of the discrete Ablowitz-Ladik flows and applications. J. Math. Phys. 44:4573–4588, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  28. J.S. Geronimo, F. Gesztesy, and H. Holden. Algebro-geometric solutions of the Baxter-Szegö difference equation. Commun. Math. Phys. 258:149–177, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  29. F. Gesztesy and H. Holden. Soliton Equations and Their Algebro-Geometric Solutions. Volume I: (1+1)-Dimensional Continuous Models. Cambridge Studies in Advanced Mathematics, Vol. 79, Cambridge University Press, Cambridge, 2003.

    Google Scholar 

  30. F. Gesztesy, H. Holden, J. Michor, and G. Teschl. Soliton Equations and Their Algebro-Geometric Solutions. Volume II: (1+1)-Dimensional Discrete Models. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, to appear.

    Google Scholar 

  31. F. Gesztesy, H. Holden, J. Michor, and G. Teschl. Algebro-geometric finite-band solutions of the Ablowitz-Ladik hierarchy. Int. Math. Res. Notices, 2007: 1–55, rnm082.

    Google Scholar 

  32. F. Gesztesy, H. Holden, J. Michor, and G. Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy, arXivanlin/07063370.

    Google Scholar 

  33. F. Gesztesy, H. Holden, J. Michor, and G. Teschl. Local conservation laws and the Hamiltonian formalism for the Ablowitz-Ladik hierarchy. Stud. Appl. Math. 120:361–423, 2008.

    Article  MathSciNet  Google Scholar 

  34. F. Gesztesy and M. Zinchenko. Weyl-Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle. J. Approx. Th. 139:172–213, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  35. F. Gesztesy and M. Zinchenko. A Borg-type theorem associated with orthogonal polynomials on the unit circle. J. London Math. Soc. 74:757–777, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  36. L. Golinskii. Schur flows and orthogonal polynomials on the unit circle. Sbornik Math. 197:1145–1165, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  37. R. Killip and I. Nenciu. CMV; The unitary analogue of Jacobi matrices. Commun. Pure Appl. Math. 59:1–41, 2006.

    Article  Google Scholar 

  38. L.-C. Li. Some remarks on CMV matrices and dressing orbits. Int. Math. Res. Notices 40:2437–2446, 2005.

    Article  Google Scholar 

  39. P.D. Miller. Macroscopic behavior in the Ablowitz-Ladik equations. Nonlinear Evolution Equations & Dynamical Systems V.G. Makhankov, A.R. Bishop, and D.D. Holm (eds.), World Scientific, Singapore, 1995, pp. 158–167.

    Google Scholar 

  40. P.D. Miller, N.M. Ercolani, I.M. Krichever, and C.D. Levermore. Finite genus solutions to the Ablowitz-Ladik equations. Comm. Pure Appl. Math. 48:1369–1440, 1995.

    MATH  MathSciNet  Google Scholar 

  41. A. Mukaihira and Y. Nakamura. Schur flow for orthogonal polynomials on the unit circle and its integrable discretization. J. Comput. Appl. Math. 139:75–94, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  42. I. Nenciu. Lax Pairs for the Ablowitz-Ladik System via Orthogonal Polynomials on the Unit Circle. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 2005.

    Google Scholar 

  43. I. Nenciu. Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle. Int. Math. Res. Notices 11:647–686, 2005.

    Article  MathSciNet  Google Scholar 

  44. I. Nenciu. CMV matrices in random matrix theory and integrable systems: a survey. J. Phys. A 39:8811–8822, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  45. R.J. Schilling. A systematic approach to the soliton equations of a discrete eigen value problem. J. Math. Phys. 30:1487–1501, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  46. B. Simon. Analogs of the m-function in the theory of orthogonal polynomials on the unit circle. J. Comp. Appl. Math. 171:411–424, 2004.

    Article  MATH  Google Scholar 

  47. B. Simon. Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, Part 2: Spectral Theory, AMS Colloquium Publication Series, Vol. 54, Amer. Math. Soc., Providence, R.I., 2005.

    Google Scholar 

  48. B. Simon. OPUC on one foot Bull. Amer. Math. Soc. 42:431–460, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  49. B. Simon. CMV matrices: Five years after J. Comp. Appl. Math. 208:120–154, 2007.

    Article  MATH  Google Scholar 

  50. B. Simon. Zeros of OPUC and long time asymptotics of Schur and related flows. Inverse Probl. Imaging 1:189–215, 2007.

    MATH  MathSciNet  Google Scholar 

  51. K.M. Tamizhmani and Wen-Xiu Ma. Master symmetries from Lax operators for certain lattice solution hierarchies. J. Phys. Soc. Japan 69:351–361, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  52. G. Teschl. Jacobi Operators and Completely Integrable Nonlinear Lattices. Math. Surveys Monographs, Vol. 72, Amer. Math. Soc., Providence, R.I., 2000.

    MATH  Google Scholar 

  53. K.L. Vaninsky. An additional Gibbs’ state for the cubic Schrödinger equation on the circle. Comm. Pure Appl. Math. 54:537–582, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  54. V.E. Vekslerchik. Finite genus solutions for the Ablowitz-Ladik hierarchy. J. Phys. A 32:4983–4994, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  55. V.E. Vekslerchik. Functional representation of the Ablowitz-Ladik hierarchy. II J. Nonlin. Math. Phys. 9:157–180, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  56. V.E. Vekslerchik. Implementation of the Bäcklund transformations for the Ablowitz-Ladik hierarchy. J. Phys. A 39:6933–6953, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  57. V.E. Vekslerchik and V.V. Konotop. Discrete nonlinear Schrödinger equation under non-vanishing boundary conditions. Inverse Problems 8:889–909, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  58. Y. Zeng and S. Rauch-Wojciechowski. Restricted flows of the Ablowitz-Ladik hierarchy and their continuous limits. J. Phys. A 28:113–134, 1995.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Gesztesy, F., Holden, H., Michor, J., Teschl, G. (2008). The Ablowitz-Ladik Hierarchy Revisited. In: Janas, J., Kurasov, P., Naboko, S., Laptev, A., Stolz, G. (eds) Methods of Spectral Analysis in Mathematical Physics. Operator Theory: Advances and Applications, vol 186. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8755-6_8

Download citation

Publish with us

Policies and ethics