Skip to main content

Cohereditary Modules in σ[M]

  • Conference paper
Modules and Comodules

Part of the book series: Trends in Mathematics ((TM))

Abstract

A module N ∈ σ[M] is called cohereditary in σ[M] if every factor module of N is injective in σ[M]. This paper explores the properties and the structure of some classes of cohereditary modules. Among others, we prove that any cohereditary lifting semi-artinian module in σ[M] is a direct sum of Artinian uniserial modules. We show that over a commutative ring a lifting module N with small radical is cohereditary in σ[M] if and only if N is semisimple M-injective. It is also shown that if E is an indecomposable injective module over a commutative Noetherian ring R with associated prime ideal p, then E is cohereditary lifting if and only if there is only one maximal ideal m over p and the ring R m is a discrete valuation ring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Alkan and A. Harmanci, On summand sum and summand intersection property of modules, Turkish J. Math. 26 (2002), 131–147.

    MathSciNet  MATH  Google Scholar 

  2. F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, Berlin, Heidelberg, New York, 1974.

    MATH  Google Scholar 

  3. Y. Baba and M. Harada, On almost M-projectives and almost M-injectives, Tsukuba J. Math. 14(1) (1990), 53–69.

    MathSciNet  MATH  Google Scholar 

  4. N. Bourbaki, Algèbre commutative, Chapitres 5 à 7. Masson, Paris, 1985.

    Google Scholar 

  5. J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Frontiers in Mathematics, Birkhäuser, 2006.

    MATH  Google Scholar 

  6. N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending Modules, Pitman Research Notes in Mathematics series, Longman, Harlow, 1994.

    Google Scholar 

  7. L. Ganesan and N. Vanaja, Modules for which every submodule has a unique coclosure, Comm. Algebra 30(5) (2002), 2355–2377.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Hausen, Supplemented modules over Dedekind domains, Pacific J. Math. 100(2) (1982), 387–402.

    MathSciNet  MATH  Google Scholar 

  9. A. Idelhadj and R. Tribak, On injective ⊕-supplemented modules, Proceedings of the first Moroccan-Andalusian meeting on algebras and their applications, Tétouan, Morocco, September 2001. Morocco: Université Abdelmalek Essaadi, Faculté des Sciences de Tétouan, Dépt. de Mathématiques et Informatique, UFR-Algèbre et Géométrie Différentielle. (2003), 166–180.

    Google Scholar 

  10. A. Idelhadj and R. Tribak, On some properties of ⊕-supplemented modules, Int. J. Math. Math. Sci. 69 (2003), 4373–4387.

    Article  MathSciNet  Google Scholar 

  11. A. Idelhadj and R. Tribak, Modules for which every submodule has a supplement that is a direct summand, Arab. J. Sci. Eng. Sect. C Theme Issues 25(2)(2000), 179–189.

    MathSciNet  Google Scholar 

  12. Irving Kaplansky, Infinite Abelian Groups, University of Michigan, 1969.

    Google Scholar 

  13. F. Kasch, Modules and Rings, New York: Academic Press, 1982.

    MATH  Google Scholar 

  14. D. Keskin, Finite direct sum of(D 1) modules, Turkish J. Math. 22 (1998), 85–91.

    MathSciNet  MATH  Google Scholar 

  15. T.Y. Lam, Lectures on Modules and Rings, vol. 189 of Graduate Texts in Mathematics, New York: Springer-Verlag, 1998.

    Google Scholar 

  16. C. Lomp, On Dual Goldie Dimension, Diplomarbeit (M. Sc. Thesis), University of Düsseldorf, Germany, 1996.

    Google Scholar 

  17. S.H. Mohamed and B.J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series, 147, Cambridge, 1990.

    Google Scholar 

  18. E. Matlis, 1-Dimensional Cohen-Macaulay Rings, Lecture Notes in Mathematics, 327, Springer-Verlag, 1973.

    Google Scholar 

  19. B.L. Osofsky, Rings all of whose finitely generated modules are injective, Pacific J. Math. 14 (1964), 645–650.

    MathSciNet  MATH  Google Scholar 

  20. K. Oshiro and R. Wisbauer, Modules with every subgenerated module lifting, Osaka J. Math. 32 (1995), 513–519.

    MathSciNet  MATH  Google Scholar 

  21. D.W. Sharpe and P. Vamos, Injective Modules, Lecture in Pure Mathematics, University of Sheffield, 1972.

    Google Scholar 

  22. Y. Talebi and N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Algebra 30(3) (2002), 1449–1460.

    Article  MathSciNet  MATH  Google Scholar 

  23. William D. Weakley, Modules whose proper submodules are finitely generated, J. Algebra 84 (1983), 189–219.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.

    MATH  Google Scholar 

  25. R. Wisbauer, Tilting in Module Categories, Abelian groups, module theory, and topology (Padua, 1997), Lect. Notes Pure Appl. Math., 201, Marcel Dekker, New York, (1998), 421–444.

    Google Scholar 

  26. O. Zarisky and P. Samuel. Commutative Algebra, 1. Springer-Verlag, New York, Heidelberg, Berlin, 1979.

    Google Scholar 

  27. H. Zöschinger, Schwach-Injektive Moduln, Period. Math. Hungar. 52(2) (2006), 105–128.

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Zöschinger, Gelfandringe und Koabgeschlossene Untermoduln, Bayer. Akad. Wiss. Math.-Natur. Kl., Sitzungsber., 3 (1982), 43–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

This paper is dedicated to Professor Robert Wisbauer on his 65th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Tütüncü, D.K., Ertaş, N.O., Tribak, R. (2008). Cohereditary Modules in σ[M]. In: Brzeziński, T., Gómez Pardo, J.L., Shestakov, I., Smith, P.F. (eds) Modules and Comodules. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8742-6_17

Download citation

Publish with us

Policies and ethics