Skip to main content

Part of the book series: Studies in Universal Logic ((SUL))

  • 848 Accesses


In many institutions the satisfaction relation between models and sentences is defined by induction on the structure of the sentences. Usually sentences are formed from ‘atomic’ sentences, which constitute the starting building blocks, by applying iteratively constructs such as quantifiers and connectives. The connectives may be Boolean or potentially of another kind, such as modal for example. The definition of a satisfaction relation in these institutions can be seen as a two-layered process. At the base level, one defines satisfaction of the ‘atomic’ sentences. Then the induction step consists of a definition of satisfaction for the quantified sentences and of sentences formed by Boolean (or another kind of) connectives on the basis of satisfaction of the components. This Tarskian process of determining the actual satisfaction between models and sentences is a common pattern for a multitude of institutions and has an institution-independent nature. The uniform treatment at a general institution-independent level of the semantics of Boolean connectives, quantifiers, and to some extent even of the atomic sentences, is the gate to institutionindependent model theory and constitutes the main topic of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag AG

About this chapter

Cite this chapter

(2008). Internal Logic. In: Institution-independent Model Theory. Studies in Universal Logic. Birkhäuser Basel.

Download citation

Publish with us

Policies and ethics