Extensions of σ-C* -algebras

  • Rachid El Harti
Part of the Operator Theory: Advances and Applications book series (OT, volume 181)


Let A be a σ-C*-algebra. The bounded part b(A) of A introduced by Konrad Schmüdgen in [4] is a C*-algebra for some C*-norm. We shall show that if A is a split extension of a σ-C*-algebra B by a closed two-sided ideal I then b(A) will be a split extension of the C*-algebra b(B) by the closed two-sided b(I). A number of results concerning the bounded part of a σ-C*-algebra are established.


C*-algebra split extension multipliers algebra spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Inoue, Locally C*-algebras, Mem. Fac. Sci. Kyushu Univ. Ser. A, 25: 197–235 (1971).zbMATHGoogle Scholar
  2. [2]
    M. Mathieu, Elementary operators on prime C*-algebras I, Math. Ann. 284(2): 223–244 (1989).CrossRefMathSciNetzbMATHGoogle Scholar
  3. [3]
    G.K. Pedersen, Measure theory for C*-algebras, Math. Scand. 19:131–143 (1966).MathSciNetGoogle Scholar
  4. [4]
    N.C. Phillips, Inverse limits of C*-algebras, J. Operator Theory 19(1): 159–195 (1988).MathSciNetzbMATHGoogle Scholar
  5. [5]
    N.C. Phillips, Inverse limits of C*-algebras, in Operator algebras and applications, Vol. I, London Math. Soc., Lecture Note Ser. 135, pages 127–185, Cambridge University Press, Cambridge (1988).Google Scholar
  6. [6]
    N.C. Phillips, A new approach to the multipliers of Pedersen’s ideal, Proc. Amer. Math. Soc. 104(3): 861–867 (1988).CrossRefMathSciNetzbMATHGoogle Scholar
  7. [7]
    Konrad Schmüdgen, Über LMC-Algebren, Math. Nachr. 68: 167–182 (1975).CrossRefMathSciNetzbMATHGoogle Scholar
  8. [8]
    Z. Sebestyén, Every C*-seminorm is automatically submultiplicative, Period. Math. Hangar. 10(1): 1–8 (1979).CrossRefzbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Rachid El Harti
    • 1
  1. 1.University Hassan I.SettatMorocco

Personalised recommendations