On the Fredholm Index of Matrix Wiener-Hopf plus/minus Hankel Operators with Semi-almost Periodic Symbols

  • Giorgi Bogveradze
  • Luís P. Castro
Part of the Operator Theory: Advances and Applications book series (OT, volume 181)


Conditions for the Fredholm property of Wiener-Hopf plus/minus Hankel operators with semi-almost periodic Fourier matrix symbols are exhibited. Under such conditions, a formula for the sum of the Fredholm indices of these Wiener-Hopf plus Hankel and Wiener-Hopf minus Hankel operators is derived. Concrete examples are worked out in view of the computation of the Fredholm indices.


Fredholm index formula Wiener-Hopf plus/minus Hankel operator semi-almost periodic function Fredholm property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Böttcher, Yu.I. Karlovich and I.M. Spitkovsky, Convolution Operators and Factorization of Almost Periodic Matrix Functions, Oper. Theory Adv. Appl. 131, Birkhäuser Verlag, Basel, 2002.Google Scholar
  2. [2]
    G. Bogveradze and L.P. Castro, Wiener-Hopf plus Hankel operators on the real line with unitary and sectorial symbols, Contemp. Math. 414 (2006), 77–85.MathSciNetGoogle Scholar
  3. [3]
    G. Bogveradze and L.P. Castro, Invertibility of matrix Wiener-Hopf plus Hankel operators with APW Fourier symbols, Int. J. Math. Math. Sci. 38152 (2006), 1–12.CrossRefMathSciNetGoogle Scholar
  4. [4]
    L.P. Castro and F.-O. Speck, Regularity properties and generalized inverses of deltarelated operators, Z. Anal. Anwend. 17 (1998), 577–598.zbMATHMathSciNetGoogle Scholar
  5. [5]
    L.P. Castro, F.-O. Speck and F.S. Teixeira, Explicit solution of a Dirichlet-Neumann wedge diffraction problem with a strip, J. Integral Equations Appl. 15 (2003), 359–383.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    L.P. Castro, F.-O. Speck and F.S. Teixeira, On a class of wedge diffraction problems posted by Erhard Meister, Oper. Theory Adv. Appl. 147 (2004), 211–238.MathSciNetGoogle Scholar
  7. [7]
    L.P. Castro, F.-O. Speck and F.S. Teixeira, A direct approach to convolution type operators with symmetry, Math. Nachr. 269–270 (2004), 73–85.CrossRefMathSciNetGoogle Scholar
  8. [8]
    T. Ehrhardt, Invertibility theory for Toeplitz plus Hankel operators and singular integral operators with flip, J. Funct. Anal. 208 (2004), 64–106.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    T. Ehrhardt, Factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip, Habilitation Thesis, Technische Universtität Chemnitz, Chemnitz, 2004.Google Scholar
  10. [10]
    N. Karapetiants and S. Samko, Equations with Involutive Operators, Birkhäuser, Boston, 2001.zbMATHGoogle Scholar
  11. [11]
    Yu. Karlovich, On the Haseman problem, Demonstratio Math. 26 (1993), 581–595.zbMATHMathSciNetGoogle Scholar
  12. [12]
    Yu.I. Karlovich and I.M. Spitkovsky, Factorization of almost periodic matrix functions and the Noether theory of certain classes of equations of convolution type (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 2, 276–308; translation in Math. USSR-Izv. 34 (1990), no. 2, 281–316.zbMATHMathSciNetGoogle Scholar
  13. [13]
    V.G. Kravchenko, A.B. Lebre and G.S. Litvinchuk, Spectrum problems for singular integral operators with Carleman shift, Math. Nachr. 226 (2001), 129–151.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    V.G. Kravchenko and G.S. Litvinchuk, Introduction to the Theory of Singular Integral Operators with Shift, Kluwer Academic Publishers Group, Dordrecht, 1994.zbMATHGoogle Scholar
  15. [15]
    A.B. Lebre, E. Meister and F.S. Teixeira, Some results on the invertibility of Wiener-Hopf-Hankel Operators, Z. Anal. Anwend. 11 (1992), 57–76.zbMATHMathSciNetGoogle Scholar
  16. [16]
    E. Meister, F.-O. Speck and F.S. Teixeira, Wiener-Hopf-Hankel operators for some wedge diffraction problems with mixed boundary conditions, J. Integral Equations Appl. 4 (1992), 229–255.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    A.P. Nolasco and L.P. Castro, A Duduchava-Saginashvili’s type theory for Wiener-Hopf plus Hankel operators, J. Math. Anal. Appl. 331 (2007), 329–341.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    A.P. Nolasco, Regularity Properties of Wiener-Hopf-Hankel Operators, PhD Thesis, University of Aveiro, 2007.Google Scholar
  19. [19]
    S.C. Power, C*-algebras generated by Hankel operators and Toeplitz operators, J. Funct. Anal. 31 (1979), 52–68.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    S. Roch and B. Silbermann, Algebras of Convolution Operators and their Image in the Calkin Algebra, Report MATH (90-05), Akademie der Wissenschaften der DDR, Karl-Weierstrass-Institut für Mathematik, Berlin, 1990.zbMATHGoogle Scholar
  21. [21]
    D. Sarason, Toeplitz operators with semi-almost periodic symbols, Duke Math. J. 44 (1977), 357–364.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    I.B. Simonenko, Some general questions in the theory of the Riemann boundary problem, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), no. 5, 1138–1146 (in Russian); English translation in Math. USSR-Izv. 2 (1968), no. 5, 1091–1099.zbMATHMathSciNetGoogle Scholar
  23. [23]
    F.S. Teixeira, On a class of Hankel operators: Fredholm properties and invertibility, Integral Equations Operator Theory 12 (1989), 592–613.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    F.S. Teixeira, Diffraction by a rectangular wedge: Wiener-Hopf-Hankel formulation, Integral Equations Operator Theory 14 (1991), 436–454.zbMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Giorgi Bogveradze
    • 1
  • Luís P. Castro
    • 1
  1. 1.Research Unit “Matemática e Aplicações” Department of MathematicsUniversity of AveiroAveiroPortugal

Personalised recommendations