On Homotopical Non-invertibility of C*-extensions

  • Vladimir Manuilov
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 181)


We have presented recently an example of a C*-extension, which is not invertible in the semigroup of homotopy classes of C*-extensions. Here we reveal the cause for existence of homotopy non-invertible C*-extensions: it is related to non-exact C*-algebras and to possibility to distinguish different tensor C*-norms by K-theory. We construct a special C*-algebra, K-theory of which hosts an obstruction for homotopical non-invertibility, and show that this obstruction for our example does not vanish.


C*-algebra C*-extension homotopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Anderson, A C*-algebra A for which Ext(A) is not a group. Ann. Math. 107 (1978), 455–458.CrossRefGoogle Scholar
  2. [2]
    R.G. Bartle, L.M. Graves, Mappings between function spaces. Trans. Amer. Math. Soc. 72 (1952), 400–413.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    B. Blackadar. K-theory for Operator Algebras. MSRI Publ. 5, Springer-Verlag, 1986.Google Scholar
  4. [4]
    L.G. Brown, R.G. Douglas, P.A. Fillmore, Extensions of C*-algebras and Khomology. Ann. Math. 105 (1977), 265–324.CrossRefMathSciNetGoogle Scholar
  5. [5]
    A. Connes, N. Higson. Déformations, morphismes asymptotiques et K-théorie bivariante. C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 101–106.zbMATHMathSciNetGoogle Scholar
  6. [6]
    M. Dadarlat and S. Eilers, On the classification of nuclear C*-algebras. Proc. London Math. Soc. (3) 85 (2002), 168–210.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    U. Haagerup, S. Thorbjornsen, A new application of random matrices: Ext(C red*(F 2)) is not a group. Ann. Math. 162 (2005), 711–775.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    P. de la Harpe, A. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts. Astérisque, 175, 1989.Google Scholar
  9. [9]
    P. de la Harpe, A.G. Robertson, A. Valette, On the spectrum of the sum of generators for a finitely generated group. Israel J. Math. 81 (1993), 65–96.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    N. Higson, V. Lafforgue, G. Skandalis, Counterexamples to the Baum-Connes conjecture. Geom. and Funct. Anal. 12 (2002), 330–354.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    D. Kazhdan, Connection of the dual space of a group with the structure of its closed subgroups. Funkts. Anal. Prilozh. 1 (1967), No. 1, 71–74 (in Russian). English translation: Funct. Anal. Appl. 1 (1967), 63–65.Google Scholar
  12. [12]
    E. Kirchberg, On semi-split extensions, tensor products and exactness of C*-algebras. Invent. Math. 112 (1993), 449–489.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    K. Knudsen-Jensen, K. Thomsen. Elements of KK-theory. Birkhäuser, 1991.Google Scholar
  14. [14]
    T. Loring, Almost multiplicative maps between C*-algebras. Operator Algebras and Quantum Field Theory, Rome, 1996, 111–122.Google Scholar
  15. [15]
    A. Lubotzky, Discrete groups, expanding graphs and invariant measures. Birkhäuser, 1994.Google Scholar
  16. [16]
    V. Manuilov, K. Thomsen, On the lack of inverses to C*-extensions related to property T groups. Canad. Math. Bull. 50 (2007), to appear.Google Scholar
  17. [17]
    N. Ozawa, An application of expanders to B l 2B l 2. J. Funct. Anal. 198 (2003), 499–510.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    A. Valette, Minimal projections, integrable representations and property T. Arch. Math. 43 (1984), 397–406.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    S. Wassermann, Tensor products of free group C*-algebras. Bull. London Math. Soc. 22 (1990), 375–380.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    S. Wassermann, C*-algebras associated with groups with Kazhdan’s property T. Ann. Math. 134 (1991), 423–431.CrossRefMathSciNetGoogle Scholar
  21. [21]
    S. Wassermann, Liftings in C*-algebras: a counterexample. Bull. London Math. Soc. 9 (1976), 201–202.CrossRefMathSciNetGoogle Scholar
  22. [22]
    S. Wassermann, Exact C*-algebras and related topics. Lecture Notes Series 19, Seoul National Univ., 1994.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Vladimir Manuilov
    • 1
    • 2
  1. 1.Dept. of Mechanics and MathematicsMoscow State UniversityMoscowRussia
  2. 2.Harbin Institute of TechnologyP. R. China

Personalised recommendations