Skip to main content

The occurrence, induction, specificity and potential effect of antibodies against poly(ethylene glycol)

  • Chapter
PEGylated Protein Drugs: Basic Science and Clinical Applications

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Specific antibodies against poly(ethylene glycol) (anti-PEG) were induced in animals following exposure to PEG-conjugated proteins and particles, resulting in rapid clearance of PEG-conjugated agents. In humans, induction of anti-PEG was observed following exposure to a PEG-conjugated drug, and pre-existing anti-PEG was identified in over 25% the healthy population. In clinical studies, the presence of anti-PEG was strongly associated with rapid clearance of PEG-asparaginase and PEG-uricase. PEGylation of therapeutic agents will continue to be of significant value in medicine to reduce immunogenicity, antigenicity and toxicity as well as markedly reducing renal clearance, while maintaining drug efficacy. It is important to recognize that PEG itself may possess antigenic and immunogenic properties. Further comprehensive studies are warranted to fully elucidate the effect of anti-PEG on PEG-conjugated agents and if confirmed in a prospective trial, patients should be screened and monitored for anti-PEG, and strategies developed to overcome the potential negative effect of anti-PEG on drug clearance to improve the effectiveness of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey FE, Koleske JV (eds) (1991) Alkylene oxides and their polymers. Marcel Dekker, New York

    Google Scholar 

  2. Bailey FE, Koleske JV (eds) (1976) Poly(ethylene oxide). Academic Press, New York

    Google Scholar 

  3. Pang SNJ (1993) Final report on the safety assessment of polyethylene glycols (PEGs) −6, −8, −32, −75, −150, −14M, −20M. J Am Coll Toxicol 12: 429–457

    Google Scholar 

  4. Fruijtier-Pölloth C (2005) Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicol 214: 1–38

    Article  CAS  Google Scholar 

  5. Abuchowski A, van Es T, Palczuk NC, Davis FF (1977) Alteration and immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem 252: 3578–3581

    PubMed  CAS  Google Scholar 

  6. Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF (1977) Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 252: 3582–3586

    PubMed  CAS  Google Scholar 

  7. Pasut G, Sergi M, Veronese FM (2008) Anti-cancer PEG-enzymes: 30 years old, but still a current approach. Adv Drug Deliv Rev 60: 69–78

    Article  PubMed  CAS  Google Scholar 

  8. Graham ML (2003) Pegaspargase: a review of clinical studies. Adv Drug Deliv Rev 55: 1293–1302

    Article  PubMed  CAS  Google Scholar 

  9. Hawkins DS, Park JR, Thomson BG, Felgenhauer JL, Holcenberg JS, Panosyan EH, Avramis VI (2004) Asparaginase pharmacokinetics after intensive polyethylene glycol-conjugated L-asparaginase therapy for children with relapsed acute lymphoblastic leukemia. Clin Cancer Res 10: 5335–5341

    Article  PubMed  CAS  Google Scholar 

  10. Matthews SJ, McCoy C (2004) Peginterferon alfa-2a: A review of approved and investigational uses. Clin Therapeut 26: 991–1025

    Article  CAS  Google Scholar 

  11. Koslowski A, Charles SA, Harris JM (2001) Development of pegylated interferons for the treatment of chronic hepatitis C. BioDrugs 15: 419–429

    Article  Google Scholar 

  12. Luxon BA, Grace M, Brassard D, Bordens R (2002) Pegylated interferons for the treatment of chronic hepatitis C infection. Clin Ther 24: 1363–1383

    Article  PubMed  CAS  Google Scholar 

  13. Stathopoulos GP, Dimou E, Stathopoulos J, Xynotroulas J (2005) Therapeutic administration of pegfilgrastim instead of prophylatic use. Anticancer Res 25: 2445–2448

    PubMed  CAS  Google Scholar 

  14. Molineux G (2004) The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta®). Curr Pharm Des 10: 1235–1244

    Article  PubMed  CAS  Google Scholar 

  15. Piedmonte DM, Treuheit MJ (2008) Formulation of Neulasta® (pegfilgrastim). Adv Drug Deliv Rev 60: 50–58

    Article  PubMed  CAS  Google Scholar 

  16. Hershfield MS, Buckley RH, Greenberg ML, Melton AL, Schiff R, Hatem C, Kurtzberg J, Market ML, Kobayashi RH, Abuchowski A (1987) Treatment of adenosine deaminase deficiency with polyethylene glycol modified adenosine deaminase. New Engl J Med 316: 589–596

    Article  PubMed  CAS  Google Scholar 

  17. Hershfield MS (1997) Biochemistry and immunology of poly(ethylene glycol)-modified adenosine deaminase (PEG-ADA). In: JM Harris, S Zalipsky (eds): Poly(ethylene glycol): chemistry and biological applications. American Chemical Society, Washington DC, 145–154

    Chapter  Google Scholar 

  18. Greenwald RB, Choe YH, McGuire J, Conover CD (2003) Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 55: 217–250

    Article  PubMed  CAS  Google Scholar 

  19. Francis GE, Fisher D, Delgado C, Malik F, Gardiner A, Neale D (1998) PEGylation of cytokines and other therapeutic proteins and peptides: the importance of biological optimisation of coupling techniques. Int J Hematol 68: 1–18

    Article  PubMed  CAS  Google Scholar 

  20. Delgado C, Francis GE, Fisher D (1992) The uses and properties of PEG-linked proteins. Crit Rev Ther Drug Carrier Syst 9: 249–304

    PubMed  CAS  Google Scholar 

  21. Molineux G (2002) Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer Treat Rev 28(suppl A): 13–16

    Article  PubMed  CAS  Google Scholar 

  22. Veronese FM, Morpurgo M (1999) Bioconjugation in pharmaceutical chemistry. Farmaco 54: 497–516

    Article  PubMed  CAS  Google Scholar 

  23. Monfardini C, Veronese FM (1998) Stabilization of substances in circulation. Bioconj Chem 9: 418–450

    Article  CAS  Google Scholar 

  24. Veronese FM, Caliceti P, Schiavon O, Sergi M (2002) Polyethylene glycol-superoxide dismutase, a conjugate in search of exploitation. Adv Drug Deliv Rev 54: 587–606

    Article  PubMed  CAS  Google Scholar 

  25. Hinds KD, Kim SW (2002) Effects of PEG conjugation on insulin properties. Adv Drug Deliv Rev 54: 505–530

    Article  PubMed  CAS  Google Scholar 

  26. Roberts MJ, Harris MJ (1998) Attachment of degradable poly(ethylene glycol) to proteins has the potential to increase therapeutic efficacy. J Pharm Sci 87: 1440–1445

    Article  PubMed  CAS  Google Scholar 

  27. Gaberc-Porekar V, Zore I, Podobnik B, Menart V (2008) Obstacles and pitfalls in the PEGylation of therapeutic proteins. Curr Opinin Drug Discov Develop 11: 242–250

    CAS  Google Scholar 

  28. Chapman AP (2002) PEGylated antibodies and antibody fragments for improved therapy: A review. Adv Drug Deliv Rev 54: 531–545

    Article  PubMed  CAS  Google Scholar 

  29. Bjorkholm M, Fagrell B, Przybelski R, Winslow N, Young M, Winslow RM (2005) A phase I single blind clinical trial of a new oxygen transport agent (MP4), human hemoglobin modified with maleimide-activated polyethylene glycol. Haematologica 90: 505–515

    PubMed  Google Scholar 

  30. Hinds KD, Kim SW (2002) Affects of PEG conjugation on insulin properties. Adv Drug Deliv Rev 54: 505–530

    Article  PubMed  CAS  Google Scholar 

  31. Parveen S, Sahoo SK (2006) Nanomedicine: Clinical application of polyethylene glycol conjugated proteins and drugs. Clin Pharmacokinet 45: 965–988

    Article  PubMed  CAS  Google Scholar 

  32. van Vlerken LE, Vyas TK, Amiji MM (2007) Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 24: 1405–1414

    Article  PubMed  CAS  Google Scholar 

  33. Dreborg S, Åkerblom E (1990) Immunotherapy with monomethoxypolyethylene glycol modified allergens. Crit Rev Ther Drug Carrier Syst 6: 315–365

    PubMed  CAS  Google Scholar 

  34. Fishburn CS (2008) The pharmacology of PEGylation: Balancing PD with PK to generate novel therapeutics. J Pharm Sci 97: 4167–4183

    Article  PubMed  CAS  Google Scholar 

  35. Richter AW, Åkerblom E (1984) Polyethylene glycol reactive antibodies in man: titer distribution in allergic patients treated with monomethoxy polyethylene glycol modified allergens or placebo, and in healthy blood donors. Int Arch Allergy Appl Immunol 74: 36–39

    Article  PubMed  CAS  Google Scholar 

  36. Richter AW, Åkerblom E (1983) Antibodies against polyethylene glycol produced in animals by immunization with monomethoxy polyethylene glycol modified proteins. Int Arch Allergy Appl Immunol 74: 124–131

    Article  Google Scholar 

  37. Martinez AL, Sherman MR, Saifer MGP, Williams LD (2004) Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof. Patent Cooperation Treaty WO/2004/030617

    Google Scholar 

  38. Armstrong JK, Fisher TC (2008) Poly(ethylene glycol) anti-body detection assays and kits for performing thereof. Patent Cooperation Treaty WO/2008/063663

    Google Scholar 

  39. Garratty G (2008) Modulating the red cell membrane to produce universal/stealth donor red cells suitable for transfusion. Vox Sang 94: 87–95

    PubMed  CAS  Google Scholar 

  40. Armstrong JK, Meiselman HJ, Wenby RB, Fisher TC (2003) In vivo survival of poly(ethylene glycol)-coated red blood cells in the rabbit. Blood 102: 94A

    Article  CAS  Google Scholar 

  41. Cheng TL, Wu PY, Wu MF, Chern JW, Roffler SR (1999) Accelerated clearance of polyethylene glycol-modified proteins by anti-polyethylene glycol IgM. Bioconj Chem 10: 520–528

    Article  CAS  Google Scholar 

  42. Cheng TL, Cheng CM, Chen BM, Tsao DA, Chuang KH, Hsiao SW, Lin YH, Roffler SR (2005) Monoclonal antibody-based quantitation of poly(ethylene glycol)-derivatized proteins, liposomes and nanoparticles. Bioconj Chem 16: 1225–1231

    Article  CAS  Google Scholar 

  43. Cheng TL, Chen BM, Chern JW, Wu MF, Roffler SR (2000) Efficient clearance of poly(ethylene glycol)-modified immunoenzyme with anti-PEG monoclonal antibody for prodrug cancer therapy. Bioconj Chem 11: 258–266

    Article  CAS  Google Scholar 

  44. Dams ETM, Laverman P, Oyen WJG, Storm G, Scherphof GL, van der Meer JWM, Corstens FHM, Boerman OC (2000) Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 292: 1071–1079

    PubMed  CAS  Google Scholar 

  45. Judge A, McClintock K, Phelps JR, MacLachlan I (2006) Hypersensitivity and loss of disease site targeting caused by antibody responses to PEGylated liposomes. Mol Ther 13: 328–337

    Article  PubMed  CAS  Google Scholar 

  46. Semple SC, Harasym TO, Clow KA, Ansell SM, Klimuk SK, Hope MJ (2005) Immunogenicity and rapid blood clearance of liposomes containing polyethylene glycol-lipid conjugates and nucleic acid. J Pharmacol Exp Ther 312: 1020–1026

    Article  PubMed  CAS  Google Scholar 

  47. Laverman P, Carstens MG, Boerman OC, Dams ETM, Oyen WJG, van Rooijen N, Corstens FHM, Storm G (2001) Factors affecting accelerated blood clearance of polyethylene glycol-liposomes upon repeat injection. J Pharmacol Exp Ther 298: 607–612

    PubMed  CAS  Google Scholar 

  48. Sroda K, Rydlewski J, Langner M, Kozubek A, Grzybek M, Sikorski AF (2005) Repeated injections of PEG-PE liposomes generate anti-PEG antibodies. Cell Mol Biol Lett 10: 37–47

    PubMed  CAS  Google Scholar 

  49. Ishida T, Maeda R, Ichihara M, Irimura K, Kiwada H (2003) Accelerated clearance of PEGylated liposomes in rats after repeated injections. J Control Release 88: 35–42

    Article  PubMed  CAS  Google Scholar 

  50. Ishida T, Masuda K, Ichikawa T, Ichihara M, Irimura K, Kiwada H (2003) Accelerated clearance of a second injection of PEGylated liposomes in mice. Int J Pharm 255: 167–174

    Article  PubMed  CAS  Google Scholar 

  51. Ishida T, Kiwada H (2008) Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int J Pharm 354: 56–62

    Article  PubMed  CAS  Google Scholar 

  52. Ishida T, Wang XY, Shimizu T, Nawat K, Kiwada H (2007) PEGylated liposomes elicit an anti-PEG IgM reponse in a T cell-independent manner. J Control Release 122: 349–355

    Article  PubMed  CAS  Google Scholar 

  53. Ishida T, Kashima S, Kiwada H (2008) The contribution of phagocytic activity of liver macrophages to the accelerated blood clearance (ABC) phenomenon of PEGylated liposomes in rats. J Control Release 126: 162–165

    PubMed  CAS  Google Scholar 

  54. Ganson NJ, Kelly SJ, Scarlett E, Sundy JS, Hershfield MS (2006) Control of hyperuricemia in subjects with refractory gout, and induction of an antibody against poly(ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase. Arthritis Res Ther 8: R12

    Article  PubMed  CAS  Google Scholar 

  55. Sundy JS, Ganson NJ, Kelly SJ, Scarlett EL, Rehrig CD, Huang W, Hershfield MS (2007) Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout. Arthritis Rheum 56: 1021–1028 Erratum in: (2007) Arthritis Rheum 56: 1370

    Article  PubMed  CAS  Google Scholar 

  56. Armstrong JK, Hempel G, Koling S, Chan LS, Fisher T, Meiselman HJ, Garratty G (2007) Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic patients. Cancer 110: 103–111

    Article  PubMed  Google Scholar 

  57. Amgen, Annual Financial Report (2007) http://www.amgen.com/pdfs/Investors_2007_AnnualReport.pdf

    Google Scholar 

  58. Schering-Plough, Annual Financial Report (2007) http://thomson.mobular.net/thomson/7/2707/3250/

    Google Scholar 

  59. Roche Pharmaceuticals, Annual Financial Report (2007) http://www.roche.com/gb07e04.pdf

    Google Scholar 

  60. Enzon, Annual Financial Report (2007) http://investor.enzon.com/annuals.cfm

    Google Scholar 

  61. OSI Pharmaceuticals, Annual Financial Report (2007) http://media.corporate-ir.net/media_files/irol/70/70584/2007_OSIP_Annual_Report.pdf

    Google Scholar 

  62. Caliceti P, Schiavon O, Veronese FM (2001) Immunological properties of uricase conjugated to neutral soluble polymers. Bionconj Chem 12: 515–522

    Article  CAS  Google Scholar 

  63. Roberts MJ, Green ME, Baker MR (2002) Antibodies specific for poly(ethylene glycol). Patent Cooperation Treaty WO/2002/094853

    Google Scholar 

  64. Sherman MR, Saifer MGP, Perez-Ruiz F (2008) PEG-uricase in the management of gout and hyperuricemia. Adv Drug Deliv Rev 60: 59–68

    Article  PubMed  CAS  Google Scholar 

  65. Li WM, Bally MB, Schutzde-Redelmeier MP (2002) Enhanced immune response to T-independent antigen using CpG oligodeoxynucleotides encapsulated in liposomes. Vaccine 20: 148–157

    Article  Google Scholar 

  66. Boeckler C, Dautel D, Schelté P, Frisch B, Wachsmann D, Klein JP, Schuber F (1999) Design of highly immunogenic liposomal constructs combining structurally independent B cell and T helper cell peptide epitopes. Eur J Immunol 29: 2297–2308

    Article  PubMed  CAS  Google Scholar 

  67. de Jong S, Chikh G, Sekirov L, Raney S, Semple S, Klimuk S, Yuan N, Hope M, Cullis P, Tarn Y (2007) Encapsulation in liposomal nanoparticles enhances the immunstimulatory, adjuvant and anti-tumor activity of subcutaneously administered CpG ODN. Cancer Immunol Immunother 56: 1251–1264

    Article  PubMed  CAS  Google Scholar 

  68. O’Hagan DT, Singh M (2003) Microparticles as vaccine adjuvants and delivery systems. Exp Rev Vaccines 2: 269–283

    Article  Google Scholar 

  69. Ishida T, Ichihara M, Wang XY, Kiwada H (2006) Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes. J Control Release 115: 243–250

    Article  PubMed  CAS  Google Scholar 

  70. Armstrong JK, Leger R, Wenby RB, Meiselman HJ, Garratty G, Fisher TC (2003) Occurrence of an antibody to poly(ethylene glycol) in normal donors. Blood 102: 556A

    Google Scholar 

  71. General laboratory methods (1999) In: Vengelen-Tyler V (ed.): AABB Technical Manual (13th edition). American Association of Blood Banks, Bethesda MD, 646

    Google Scholar 

  72. Fisher TC, Armstrong JK, Wenby RW, Meisleman HJ, Leger R, Garratty G (2003) Isolation and identification of a human antibody to poly(ethylene glycol). Blood 102: 559A

    Google Scholar 

  73. Schick MJ (ed.) (1967) Nonionic surfactants. Marcel Dekker, New York

    Google Scholar 

  74. Smyth HF, Carpenter CP, Shaffer CB (1947) The toxicity of high molecular weight polyethylene glycols; chronic oral and parenteral administration. J Am Pharm Assoc 36: 157–160

    CAS  Google Scholar 

  75. Olser BL, Olser M (1957) Nutritional studies on rats on diets containing high levels of partial ester emulsifiers: IV Mortality and post mortem pathology; general conclusions. J. Nutrition 61: 235–252

    Google Scholar 

  76. Hooker E (2004) Final report on amended safety assessment of PEG-5, −10, −16, −25, −30 and −40 soy sterol. Int J Toxicol 23: 23–47

    Article  CAS  Google Scholar 

  77. Shaffer CB, Critchfield FH, Carpenter CP (1948) Renal excretion and volume distribution of some polyethylene glycols in the dog. Am J Physiol 151: 93–99

    Google Scholar 

  78. Shaffer CB, Critchfield FH (1947) The absorption and excretion of the solid polyethylene glycols (“Carbowax” compounds). J Am Pharm Assoc 36: 152–157

    CAS  Google Scholar 

  79. Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration in mice. J Pharm Sci 83: 601–606

    Article  PubMed  CAS  Google Scholar 

  80. Yamaoka T, Tabata Y, Ikada Y (1995) Fate of water-soluble polymers administered via different routes. J Pharm Sci 84: 349–354

    Article  PubMed  CAS  Google Scholar 

  81. Danielson GK, Dubilier LD, Bryant LR (1970) Use of Pluronic F-68 to diminish fat emboli and hemolysis during cardiopulmonary bypass. J Thorac Cardiovasc Surg 59: 178–184

    PubMed  CAS  Google Scholar 

  82. Schaer GL, Spaccavento LJ, Browne KF, Krueger KA, Krichbaum D, Phelan JM, Fletcher WO, Grines CL, Edwards S, Jolly MK et al. (1996) Beneficial effects of RheothRx injection in patients receiving thrombolytic therapy for acute myocardial infarction. Results of a randomized, doubleblind, placebo-controlled trial. Circulation 94: 298–307

    PubMed  CAS  Google Scholar 

  83. Grindel JM, Jaworski, T, Emanuele RM, Culbreth P (2002) Pharmacokinetics of a novel surfaceactive agent, purified poloxamer 188, in rat, rabbit, dog and man. Biopharmaceut Drug Dispos 23: 87–103

    Article  CAS  Google Scholar 

  84. Willcox ML, Newman MM, Paton BC (1978) A study of labeled Pluronic F-68 after intravenous administration into the dog. J Surg Res 25: 349–356

    Article  PubMed  CAS  Google Scholar 

  85. Wang ZYJ, Stern IJ (1975) Disposition in rats of a polyoxypropylene-polyoxyethylene copolymer used in plasma fractionation. Drug Metabol Dispos 3: 536–542

    CAS  Google Scholar 

  86. Jewell RC, Khor SP, Kisor DF, LaCroix KAK, Wargin WA (1997) Pharmacokinetics of RheothRx injection in healthy male volunteers J Pharm Sci 86: 808–812

    Article  PubMed  CAS  Google Scholar 

  87. Yang BB, Lum PK, Hayashi MM, Roskos LK (2004) Polyethylene glycol modification of filgrastim results in decreased renal clearance of the protein in rats. J Pharm Sci 93: 1367–1373

    Article  PubMed  CAS  Google Scholar 

  88. Asgeirsson D, Venturoli D, Fries D, Rippe B, Rippe C (2007) Glomerular sieving of three neutral polysaccharides, polyethylene oxide and bikunin in rat. Effects of molecular size and conformation. Acta Physiol 191: 237–246

    Article  CAS  Google Scholar 

  89. Webster R, Didier E, Harris P, Siegel N, Stadler J, Tilbury L, Smith D (2007) PEGylated proteins: Evaluation of their safety in the absence of definitive metabolism studies. Drug Metab Dispos 35: 9–16

    Article  PubMed  CAS  Google Scholar 

  90. Fusco S, Borzacchiello A, Netti PA (2006) Perspectives on: PEO-PPO-PEO triblock copolymers and their biomedical applications. J Bioact Compat Polymers 21: 149–164

    Article  CAS  Google Scholar 

  91. Landsteiner K (1924) Experiments on anaphylaxis to azoproteins. J Exp Med 39: 631–637

    Article  PubMed  CAS  Google Scholar 

  92. Tsai NM, Cheng TL, Roffler SR (2001) Sensitive measurement of polyethylene glycol modified proteins. BioTecniques 30: 396–402

    CAS  Google Scholar 

  93. Chan B, Wara D, Bastian J, Hershfield MS, Bohnsack J, Azen CG, Parkman R, Weinberg K, Kohn DB (2005) Long-term efficacy of enzyme replacement therapy for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID). Clin Immunol 17: 133–143

    Article  CAS  Google Scholar 

  94. Apostolidou E, Swords R, Alvarado Y, Giles FJ (2007) Treatment of acute lymphoblastic leukaemia: A new era. Drugs 67: 2153–2171

    Article  PubMed  CAS  Google Scholar 

  95. Avramis VI, Tiwari PN (2006) Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int J Nanomed 1: 241–254

    CAS  Google Scholar 

  96. Kemmer N, Neff GW (2007) Managing chronic hepatitis C in the difficult-to-treat patient. Liver Int 27: 1297–1310

    PubMed  CAS  Google Scholar 

  97. Tydén G, Kumlien G, Efvergren M (2007) Present techniques for antibody removal. Transplantation 84: S27–S29

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Armstrong, J.K. (2009). The occurrence, induction, specificity and potential effect of antibodies against poly(ethylene glycol). In: Veronese, F.M. (eds) PEGylated Protein Drugs: Basic Science and Clinical Applications. Milestones in Drug Therapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8679-5_9

Download citation

Publish with us

Policies and ethics