Abstract
The construction of the combinatorial data for a surface of maximal genus with n vertices is a classical problem: The maximal genus g = ⌊1/12(n − 3)(n − 4)⌋ was achieved in the famous “Map Color Theorem” by Ringel et al. (1968). We present the nicest one of Ringel’s constructions, for the case n ≡ 7 mod 12, but also an alternative construction, essentially due to Heffter (1898), which easily and explicitly yields surfaces of genus g ∼ 1/16 n 2.
For geometric (polyhedral) surfaces in ℝ3 with n vertices the maximal genus is not known. The current record is g ∼ 1/8n log2 n, due to McMullen, Schulz & Wills (1983). We present these surfaces with a new construction: We find them in Schlegel diagrams of “neighborly cubical 4-polytopes,” as constructed by Joswig & Ziegler (2000).
Keywords
- Polyhedral surfaces
- high genus
- neighborly surfaces
- geometric construction
- projected deformed cubes
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Dan Archdeacon and C. Paul Bonnington and Joanna A. Ellis-Monaghan, How to exhibit toroidal maps in space, Discrete Comput. Geometry, 38 (2007), 573–594.
Amos Altshuler, Polyhedral realizations in ℝ3 of triangulations of the torus and 2-manifolds in cyclic 4-polytopes, Discrete Math. 1 (1971), 211–238.
Amos Altshuler, Jürgen Bokowski, and Peter Schuchert, Neighborly 2-manifolds with 12 vertices, J. Combin. Theory Ser. A 75 (1996), no. 1, 148–162.
Nina Amenta and Günter M. Ziegler, Deformed products and maximal shadows, Advances in Discrete and Computational Geometry (South Hadley, MA, 1996) (Providence RI) (B. Chazelle, J.E. Goodman, and R. Pollack, eds.), Contemporary Mathematics, vol. 223, Amer. Math. Soc., 1998, pp. 57–90.
Eric K. Babson, Louis J. Billera, and Clara S. Chan, Neighborly cubical spheres and a cubical lower bound conjecture, Israel J. Math. 102 (1997), 297–315.
David W. Barnette, Peter Gritzmann, and Rainer Höhne, On valences of polyhedra, J. Combinatorial Theory, Ser. A 58 (1991), 279–300.
Jürgen Bokowski and Ulrich Brehm, A new polyhedron of genus 3 with 10 vertices, Intuitive geometry (Siófok, 1985), Colloq. Math. Soc. János Bolyai, vol. 48, North-Holland, Amsterdam, 1987, pp. 105–116.
_____, A polyhedron of genus 4 with minimal number of vertices and maximal symmetry, Geom. Dedicata 29 (1989), no. 1, 53–64.
Jürgen Bokowski and Antonio Guedes de Oliveira, On the generation of oriented matroids, Discrete Comput. Geometry 24 (2000), 197–208.
Ulrich Brehm and Jörg M. Wills, Polyhedral manifolds, Handbook of Convex Geometry (P. Gruber and J. Wills, eds.), North-Holland, Amsterdam, 1993, pp. 535–554.
Harold Scott MacDonald Coxeter, Regular skew polyhedra in 3 and 4 dimensions and their topological analogues, Proc. London Math. Soc. (2) 43 (1937), 33–62; Reprinted in “Twelve Geometric Essays,” Southern Illinois U. Press, Carbondale, 1968, 75–105.
Ákos Császár, A polyhedron without diagonals, Acta Sci. Math. (Szeged) 13 (1949/50), 140–142.
Richard A. Duke, Geometric embeddings of complexes, Amer. Math. Monthly 77 (1970), 597–603.
David Eppstein, Greg Kuperberg, and Günter M. Ziegler, Fat 4-polytopes and fatter 3-spheres, Discrete Geometry: In honor of W. Kuperberg’s 60th birthday (A. Bezdek, ed.), Pure and Applied Mathematics, vol. 253, Marcel Dekker Inc., New York, 2003, pp. 239–265; arXiv.org/math/0204007.
Branko Grünbaum, Convex Polytopes, Graduate Texts in Math., vol. 221, Springer-Verlag, New York, 2003, Second edition prepared by V. Kaibel, V. Klee and G.M. Ziegler (original edition: Interscience, London 1967).
Lothar Heffter, Ueber das Problem der Nachbargebiete, Math. Annalen 38 (1891), 477–508; www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN235181684_0038.
_____, Ueber metacyklische Gruppen und Nachbarconfigurationen, Math. Annalen 50 (1898), 261–268; www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN235181684_0050.
David Hilbert and Stephan Cohn-Vossen, Anschauliche Geometrie, Springer-Verlag, Berlin Heidelberg, 1932, Second edition 1996. English translation: Geometry and the Imagination, Chelsea Publ., 1952.
Stefan Hougardy, Frank H. Lutz, and Mariano Zelke, Polyhedra of genus 2 with 10 vertices and minimal coordinates, preprint, 3 pages, 2005; arXiv.org/math/0507592.
Michael Joswig and Thilo Rörig, Neighborly cubical polytopes and spheres, Israel J. Math 159 (2007), 221–242; arxiv.org/math/0503213.
Michael Joswig and Günter M. Ziegler, Neighborly cubical polytopes, Discrete & Computational Geometry (Grünbaum Festschrift: G. Kalai, V. Klee, eds.) 24:2–3 (2000), 325–344; arXiv.org/math/9812033.
Alfred B. Kempe, On the geographical problem of the four colours, American J. Math. 2 (1879), 193–200.
Frank H. Lutz, Enumeration and random realization of triangulated surfaces, Discrete Differential Geometry (A.I. Bobenko, P. Schröder, J.M. Sullivan, G.M. Ziegler, eds.), Oberwolfach Seminars, vol. 38, Birkhäuser, 2008, this volume, pp. 235–253; arXiv.org/math.CO/0506316.
Peter McMullen, Egon Schulte, and Jörg M. Wills, Infinite series of combinatorially regular polyhedra in three-space, Geom. Dedicata 26 (1988), 299–307.
Peter McMullen, Christoph Schulz, and Jörg M. Wills, Polyhedral 2-manifolds in E 3 with unusually large genus, Israel J. Math. 46 (1983), 127–144.
August F. Möbius, Mittheilungen aus Möbius’ Nachlass: I. Zur Theorie der Polyëder und der Elementarverwandtschaft, GesammelteWerke II (F. Klein, ed.), Verlag von S. Hirzel, Leipzig, 1886, pp. 515–559.
Isabella Novik, Upper bound theorems for simplicial manifolds, Israel J. Math. 108 (1998), 45–82.
Julian Pfeifle and Günter M. Ziegler, Many triangulated 3-spheres, Math. Annalen 330 (2004), 829–837; arXiv.org/math/0304492.
Nicholas Pippenger and Kristin Schleich, Topological characteristics of random triangulated surfaces, Random Struct. Algorithms 28 (2006), 247–288; arXiv.org/gr-qc/0306049.
Gerhard Ringel, Über drei kombinatorische Probleme am n-dimensionalen Würfel und Würfelgitter, Abh. Math. Sem. Univ. Hamburg 20 (1955), 10–19.
_____, Map color theorem, Grundlehren Series, vol. 234, Springer-Verlag, New York, 1974.
Raman Sanyal, Thilo Rörrig, and Günter M. Ziegler, Polytopes and polyhedral surfaces via projection, in preparation, 2006.
Lars Schewe, Satisfiability Problems in Discrete Geometry, Dissertation, Technische Universität Darmstadt, 2007, 101 pages.
Ernst Steinitz, Über die Eulerschen Polyederrelationen, Archiv für Mathematik und Physik 11 (1906), 86–88.
_____, Polyeder und Raumeinteilungen, Encyklopädie der mathematischen Wissenschaften, Dritter Band: Geometrie, III.1.2., Heft 9, Kapitel IIIAB 12 (W.Fr. Meyer and H. Mohrmann, eds.), B.G. Teubner, Leipzig, 1922, pp. 1–139.
Ernst Steinitz and Hans Rademacher, Vorlesungen über die Theorie der Polyeder, Springer-Verlag, Berlin 1934; Reprint, Springer-Verlag 1976.
Dagmar Timmreck, Necessary conditions for geometric realizability of simplicial complexes, Discrete Differential Geometry (A.I. Bobenko, P. Schröder, J.M. Sullivan, G.M. Ziegler, eds.), Oberwolfach Seminars, vol. 38, Birkhäuser, 2008, this volume, pp. 215–233.
Günter M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995, Revised edition, 1998; “Updates, corrections, and more” at www.math.tu-berlin.de/~ziegler.
_____, Projected products of polygons, Electronic Research Announcements AMS 10 (2004), 122–134; www.ams.org/era/2004-10-14/S1079-6762-04-00137-4/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Birkhäuser Verlag Basel/Switzerland
About this chapter
Cite this chapter
Ziegler, G.M. (2008). Polyhedral Surfaces of High Genus. In: Bobenko, A.I., Sullivan, J.M., Schröder, P., Ziegler, G.M. (eds) Discrete Differential Geometry. Oberwolfach Seminars, vol 38. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8621-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-7643-8621-4_10
Publisher Name: Birkhäuser Basel
Print ISBN: 978-3-7643-8620-7
Online ISBN: 978-3-7643-8621-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)