Advertisement

Homomorphic Images of Branch Groups, and Serre’s Property (FA)

  • Thomas Delzant
  • Rostislav Grigorchuk
Part of the Progress in Mathematics book series (PM, volume 265)

Abstract

It is shown that a finitely generated branch group has Serre’s property (FA) if and only if it does not surject onto the infinite cyclic group or the infinite dihedral group. An example of a finitely generated self-similar branch group surjecting onto the infinite cyclic group is constructed.

Keywords

Property (FA) branch group tree hyperbolic space indicable group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BGŠ03]
    L. Bartholdi, R.I. Grigorchuk, and Z. Šunik, Branch groups, Handbook of algebra, Vol. 3, North-Holland, Amsterdam, 2003, pp. 989–1112. MR 2035113 (2005f:20046)Google Scholar
  2. [BH99]
    M.R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486 (2000k:53038)Google Scholar
  3. [BKNV06]
    L. Bartholdi, V. Kaimanovich, V. Nekrashevych, and B. Virag, Amenability of automata groups, (preprint), 2006.Google Scholar
  4. [Bos00]
    N. Boston, p-adic Galois representations and pro-p Galois groups, New horizons in pro-p groups, Progr. Math., vol. 184, Birkhäuser Boston, Boston, MA, 2000, pp. 329–348. MR 1765126 (2001h:11073)Google Scholar
  5. [CDP90]
    M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990. MR 1075994 (92f:57003)Google Scholar
  6. [CSMS01]
    T. Ceccherini-Silberstein, Antonio Machì, and Fabio Scarabotti, The Grigorchuk group of intermediate growth, Rend. Circ. Mat. Palermo (2) 50 (2001), no. 1, 67–102. MR 1825671 (2002a:20044)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [dlH00]
    P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, The University of Chicago Press, 2000.Google Scholar
  8. [dlHV89]
    P. de la Harpe and A. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque (1989), no. 175,158, With an appendix by M. Burger. MR 1023471 (90m:22001)Google Scholar
  9. [GM93]
    R.I. Grigorchuk and A. Maki, On a group of intermediate growth that acts on a line by homeomorphisms, Mat. Zametki 53 (1993), no. 2, 46–63. MR 1220809 (94c:20008)zbMATHMathSciNetGoogle Scholar
  10. [GNS00]
    R.I. Grigorchuk, V.V. Nekrashevich, and V.I. Sushchanskii, Automata, dynamical systems, and groups, Tr. Mat. Inst. Steklova 231 (2000), no. Din. Sist., Avtom. i Beskon. Gruppy, 134–214. MR 1841755 (2002m:37016)MathSciNetGoogle Scholar
  11. [GNŠ06]
    R.I. Grigorchuk, V. Nekrashevych, and Z. Šunić, Hanoi towers groups, Oberwolfach Reports 19 (2006), 11–14.Google Scholar
  12. [Gri80a]
    R.I. Grigorčuk, On Burnside’s problem on periodic groups, Funktsional. Anal. i Prilozhen. 14 (1980), no. 1, 53–54. MR 565099 (81m:20045)MathSciNetGoogle Scholar
  13. [Gri80b]
    _____, On Burnside’s problem on periodic groups, Funktsional. Anal. i Prilozhen. 14 (1980), no. 1, 53–54. MR 565099 (81m:20045)MathSciNetGoogle Scholar
  14. [Gri84]
    R.I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 5, 939–985. MR 764305 (86h:20041)MathSciNetGoogle Scholar
  15. [Gri89]
    _____, On the Hilbert-Poincaré series of graded algebras that are associated with groups, Mat. Sb. 180 (1989), no. 2, 207–225, 304. MR 993455 (90j:20063)MathSciNetGoogle Scholar
  16. [Gri98a]
    _____, An example of a finitely presented amenable group that does not belong to the class EG, Mat. Sb. 189 (1998), no. 1, 79–100. MR 1616436 (99b:20055)zbMATHMathSciNetGoogle Scholar
  17. [Gri98b]
    _____, On Tychonoff groups, Geometry and cohomology in group theory (Durham, 1994), London Math. Soc. Lecture Note Ser., vol. 252, Cambridge Univ. Press, Cambridge, 1998, pp. 170–187. MR 1709958 (2001g:20043)Google Scholar
  18. [Gri99]
    _____, On the system of defining relations and the Schur multiplier of periodic groups generated by finite automata, Groups St. Andrews 1997 in Bath, I, London Math. Soc. Lecture Note Ser., vol. 260, Cambridge Univ. Press, Cambridge, 1999, pp. 290–317. MR 1676626 (2001g:20034)Google Scholar
  19. [Gri00]
    _____, Just infinite branch groups, New horizons in pro-p groups, Progr. Math., vol. 184, Birkhäuser Boston, Boston, MA, 2000, pp. 121–179. MR 1765119 (2002f:20044)Google Scholar
  20. [Gro87]
    M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829 (89e:20070)Google Scholar
  21. [Gro99]
    M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston Inc., Boston, MA, 1999, Based on the 1981 French original [MR0682063 (85e:53051)], With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates. MR 1699320 (2000d:53065)Google Scholar
  22. [GŠ06]
    R. Grigorchuk and Z. Šunik, Asymptotic aspects of Schreier graphs and Hanoi Towers groups, C. R. Math. Acad. Sci. Paris 342 (2006), no. 8, 545–550. MR 2217913zbMATHMathSciNetGoogle Scholar
  23. [GŠ07]
    _____, Self-similarity and branching in group theory, Groups St. Andrews 2005, I, London Math. Soc. Lecture Note Ser., vol. 339, Cambridge Univ. Press, Cambridge, 2007, pp. 36–95.Google Scholar
  24. [Mar91]
    G.A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825 (92h:22021)Google Scholar
  25. [Mo]
    D.W. Morris, Amenable groups that act on the line. Algebr. Geom. Topol. 6 (2006), 2509–2518. MR 2286034zbMATHCrossRefMathSciNetGoogle Scholar
  26. [Nek05]
    V. Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, vol. 117, American Mathematical Society, Providence, RI, 2005. MR 2162164 (2006e:20047)Google Scholar
  27. [Ol’79]
    A.Ju. Ol’šanskii, An infinite simple torsion-free Noetherian group, Izv. Akad. Nauk SSSR Ser. Mat. (1979), no. 6, 1328–1393. MR 567039 (81i:20033)Google Scholar
  28. [PV91]
    I. Pays and A. Valette, Sous-groupes libres dans les groupes d’automorphismes d’arbres, Enseign. Math. (2) 37 (1991), no. 1–2, 151–174. MR 1115748 (92f:20028)MathSciNetzbMATHGoogle Scholar
  29. [RS95]
    E. Rips and Z. Sela, Canonical representatives and equations in hyperbolic groups, Invent. Math. 120 (1995), no. 3, 489–512. MR 1334482 (96c:20053)zbMATHCrossRefMathSciNetGoogle Scholar
  30. [Sav03]
    D.M. Savchuk, On word problem in contracting automorphism groups of rooted trees, Vīsn. Kiïv. Unīv. Ser. Fīz.-Mat. Nauki (2003), no. 1, 51–56. MR 2018505MathSciNetGoogle Scholar
  31. [Ser80]
    J.-P. Serre, Trees, Springer-Verlag, Berlin, 1980. MR 607504 (82c:20083)zbMATHGoogle Scholar
  32. [Sid00]
    S. Sidki, Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity, J. Math. Sci. (New York) 100 (2000), no. 1, 1925–1943, Algebra, 12. MR 1774362 (2002g:05100)zbMATHCrossRefMathSciNetGoogle Scholar
  33. [Tit77]
    J. Tits, A “theorem of Lie-Kolchin” for trees, Contributions to algebra (collection of papers dedicated to Ellis Kolchin), Academic Press, New York, 1977, pp. 377–388. MR 0578488 (58 #28205)Google Scholar
  34. [Wil71]
    J.S. Wilson, Groups with every proper quotient finite, Proc. Camb. Phil. Soc. 69 (1971), 373–391.zbMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Thomas Delzant
    • 1
  • Rostislav Grigorchuk
    • 2
  1. 1.Département de mathématiquesUniversité de StrasbourgStrasbourg
  2. 2.Department of MathematicsTexas A & M UniversityCollege StationUSA

Personalised recommendations