Advertisement

Jørgensen’s Inequality for Non-Archimedean Metric Spaces

  • J. Vernon Armitage
  • John R. Parker
Part of the Progress in Mathematics book series (PM, volume 265)

Abstract

Jørgensen’s inequality gives a necessary condition for a non-elementary group of Möbius transformations to be discrete. In this paper we generalise this to the case of groups of Möbius transformations of a non-Archimedean metric space. As an application, we give a version of Jørgensen’s inequality for SL(2, ℚ p ).

Keywords

Discrete group p-adic numbers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Artin, Algebraic Numbers and Algebraic Functions, Nelson 1968.Google Scholar
  2. [2]
    J.W.S. Cassels, Lectures on Elliptic Curves. London Mathematical Society Student Texts 18, Cambridge University Press, 1991.Google Scholar
  3. [3]
    A. Figà-Talamanca, Local fields and trees. Harmonic Functions on Trees and Buildings, ed A. Korányi, A.M.S. Contemporary Mathematics 206 (1997), 3–16.Google Scholar
  4. [4]
    M. Gromov & R. Schoen, Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, I.H.E.S. Publ. Math. 76 (1992), 165–246.zbMATHMathSciNetGoogle Scholar
  5. [5]
    Y. Ihara, On discrete subgroups of two by two projective linear groups over p-adic fields. J. Mathematical Society of Japan 18 (1966) 219–235.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    T. Jørgensen, On discrete groups of Möbius transformations, American J. Maths. 98 (1976), 739–749.zbMATHCrossRefGoogle Scholar
  7. [7]
    S. Markham & J.R. Parker, Jørgensen’s inequality for metric spaces with applications to the octonions, Advances in Geometry 7 (2007), 19–38.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    J.-P. Serre, Trees, Springer 1980.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • J. Vernon Armitage
    • 1
  • John R. Parker
    • 1
  1. 1.Department of Mathematical SciencesUniversity of DurhamDurhamEngland

Personalised recommendations