Modelling Vaccine Protocols

Part of the Mathematics and Biosciences in Interaction book series (MBI)


Living organisms are natural complex systems where mathematical modelling may play a crucial role, since a model can be built with imperfect knowledge of some related phenomenon and model parameters (initial data, entities, relations between entities) can be adjusted to fit modelling results to experimental measurements. The model can then be used to understand the general behaviour of the phenomenon in different situations, to perform model experiments or simulations, to understand the role of single constituents and relations, to plan new experiments, or to test theoretical assumptions and suggest theory modifications. Modelling can therefore stimulate scientific creativity and produce better theoretical descriptions of the reality. We describe here our efforts to devise models of the immune system, and in particular the competition between immune defences and tumor cells. An agent-based model of the effects of a vaccine designed to prevent mammary carcinoma incidence in transgenic mice was developed. This model faithfully summarises not only the outcome of vaccination experiments, but also the dynamics of immune responses elicited by the vaccine. A genetic algorithm was used to drive the model and predict optimised vaccination schedules, which are currently being tested in vivo. The implications of biologic diversity on model development and perspectives to develop natural-scale models of the immune system are also discussed.


Cancer vaccine model simulator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    2nd International Symposium on Computational Cell Biology (2003)., Cited 16 January 2007., Cited 16 January 2007.Google Scholar
  2. [2]
    Z. Agur (2006). Biomathematics in the development of personalised medicine in oncology. Future Oncol. 2(1), 39–42.CrossRefGoogle Scholar
  3. [3]
    Z. Agur, R. Hassin, S. Levy. Optimizing chemotherapy scheduling using local search heuristics. Operations Research 54(5) (2006).Google Scholar
  4. [4]
    N. Bellomo, L. Preziosi, Modelling and mathematical problems related to tumor evolution and its interaction with the Immune System. Math. Comp. Model. 32 (2000), 413–452.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    F. Burnet, The Clonal Selection Theory of Acquired Immunity. Vanderbilt University, Nashville TN 1959.Google Scholar
  6. [6]
    S. Croci, G. Nicoletti, L. Landuzzi, C. De Giovanni, A. Astolfi, C. Marini, E. Di Carlo, P. Musiani, G. Forni, P. Nanni, P.-L. Lollini. Immunological Prevention of a Multigene Cancer Syndrome. Cancer Research 64, (2004) 8428–8434.CrossRefGoogle Scholar
  7. [7]
    C. De Giovanni, G. Nicoletti, L. Landuzzi, A. Astolfi, S. Croci, A. Comes, S. Ferrini, R. Meazza, M. Iezzi, E. Di Carlo, P. Musiani, F. Cavallo, P. Nanni, P.-L. Lollini, Immunoprevention of HER-2/neu transgenic mammary carcinoma through an inter-leukin 12-engineered allogeneic cell vaccine. Cancer Research 64(11), (2004) 4001–4009.CrossRefGoogle Scholar
  8. [8]
    J.D. Farmer, N. Packard, A. S. Perelson, The immune system, adaption and machine learning. Phisica D, 22 (1986) 187–204.CrossRefMathSciNetGoogle Scholar
  9. [9]
    E. E. Freed, Binary Magic Numbers—Some Applications and Algorithms. Dr Dobb’s Journal 8:4 (1983), 24–37.MathSciNetGoogle Scholar
  10. [10]
    S. A. Hofmeyr, An Overview of the Immune System, (1997) http://www.cs.unm. edu/~immsec/html-imm/immune-system.html. Cited January 21st, 2007.Google Scholar
  11. [11]
    N.K. Jerne, The Immune System. Scientific American 229(1) (1973), 52–60.CrossRefGoogle Scholar
  12. [12]
    N.K. Jerne, Towards a Network Theory of The Immune System. Ann. Immunol. (Ist. Pasteur) 125C (1974), 373–389.Google Scholar
  13. [13]
    J.R. Josephson and S. G. Josephson, Abductive Inference, Cambridge University Press, 1994Google Scholar
  14. [14]
    P.-L. Lollini, C. De Giovanni, L. Landuzzi, G. Nicoletti, F. Frabetti, F. Cavallo, M. Giovarelli, G. Forni, A. Modica, A. Modesti, P. Musiani, P. Nanni, Transduction of genes coding for a histocompatibility (MHC) antigen and for its physiological inducer interferon-gamma in the same cell: efficient MHC expression and inhibition of tumor and metastasis growth. Hum. Gene Ther. 6(6) (1995), 743–752.Google Scholar
  15. [15]
    P.-L. Lollini, S. Motta, F. Pappalardo, Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator. BMC Bioinformatics 7:352 (2006), doi:10.1186/1471-2105-7-352.Google Scholar
  16. [16]
    P.-L. Lollini, S. Motta, F. Pappalardo, Modeling tumor immonology. Mathematical Models and Methods in Applied Sciences, 16:supp01 (2006), 1091–1124.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    M. Mitchell, An introduction to generic algorithms. MIT Press, 1996.Google Scholar
  18. [18]
    S. Motta, P.-L. Lollini, F. Castiglione, F. Pappalardo, Modelling Vaccination Schedules for a Cancer Immunoprevention Vaccine. Immunome Research 1(5) (2005), doi:10.1186/1745-7580-1-5.Google Scholar
  19. [19]
    P. Nanni, G. Nicoletti, C. De Giovanni, L. Landuzzi, E. Di Carlo, F. Cavallo, S. M. Pupa, I. Rossi, M. P. Colombo, C. Ricci, A. Astolfi, P. Musiani, G. Forni, P.-L. Lollini, Combined allogeneic tumor cell vaccination and systemic interleukin 12 prevents mammary carcinogenesis in HER-2/neu transgenic mice. J. Exp. Med. 194(9) (2001), 1195–1205.CrossRefGoogle Scholar
  20. [20]
    F. Pappalardo, P.-L. Lollini, F. Castiglione, S. Motta, Modelling and Simulation of Cancer Immunoprevention vaccine. Bioinformatics 21(12) (2005), 2891–2897.CrossRefGoogle Scholar
  21. [21]
    F. Pappalardo, E. Mastriani, P.-L. Lollini, S. Motta, Genetic Algorithm against Cancer. Lectures Notes in Computer Science 3849 (2006), 223–228.CrossRefGoogle Scholar
  22. [22]
    F. Pappalardo, C. Calonaci, P.-L. Lollini, E. Mastriani, M. Pennisi, E. Rossi, S. Motta, Computational effort and natural scale immune system repertoire Preprint, 2007.Google Scholar
  23. [23]
    M. Pennisi, E. Mastriani, F. Pappalardo, P.-L. Lollini, S. Motta, Toward a personalized schedule with Triplex vaccine Preprint, 2007.Google Scholar
  24. [24]
    A. S. Perelson, Theoretical Immunology, Part One & Two. SFI Studies in the Sciences of Complexity, Addison Wesley, 1988.Google Scholar
  25. [25]
    A.S. Perelson, G. Weisbuch, Immunology for physicists. Rev. Mod. Phys. 69 (1997), 1219–1267.CrossRefGoogle Scholar
  26. [26]
    A. S. Perelson, G. F. Oster, Theoretical studies on clonal selection: Minimal antibody repertoire size and reliability of self-nonself discrimination. J. Theor. Biol. 81 (1979), 645–670.CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  1. 1.Dipartimento di Mathematica e InformaticaCataniaItaly
  2. 2.Department of Experimental PathologyLaboratory of Immunology and Biology of Metastasis, Cancer Research SectionBolognaItaly

Personalised recommendations