Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 969 Accesses

Abstract

Bone morphogenetic proteins (BMPs) are an integral part of new bone formation and are capable of inducing the entire bone formation cascade [1, 2]. It is this unique property that allows these proteins, when they are combined with a suitable carrier, to be used as a bone graft replacement. The new bone formation occurs in four distinct phases: recruitment and proliferation, differentiation, calcification, and maturation [3]. During the recruitment and proliferation phase, undifferentiated mesenchymal cells are attracted to the site by chemotaxis. These stem cells divide and increase in number. During the differentiation phase, the mesenchymal stem cells are transformed into osteoblasts. During the calcification phase, the osteoblasts produce matrix, generate callous and form new bone. During the maturation phase, the newly formed bone remodels into trabecular bone and increases in vascularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Urist MR (1965) Bone formation by autoinduction. Science 150: 893–899

    Article  CAS  Google Scholar 

  2. Wozney JM (2002) Overview of bone morphogenetic proteins. Spine 27(16 Suppl 1): S2–8

    Article  Google Scholar 

  3. Boden SD (2002) Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine 27(Suppl 1): S26–31

    Article  Google Scholar 

  4. Vaccaro AR, Chiba K, Heller JG, Patel TC, Thalgott JS, Truumees E, Fischgrund JS, Craig MR, Berta SC, Wang JC, North American Spine Society for Contemporary Concepts in Spine Care (2002) Bone grafting alternatives in spinal surgery. Spine J 2: 206–215

    Article  Google Scholar 

  5. Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, Luu HH, An N, Breyer B, Vanichakarn P et al (2003) Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 85: 1544–1552

    Google Scholar 

  6. Boden SD, Schimandle JH, Hutton WC (1995) The 1995 Volvo award in basic sciences. The use of an osteoconductive growth factor for lumbar spinal fusion. Part II: Study of dose, carrier, and species. Spine 20: 2633–2644

    Article  CAS  Google Scholar 

  7. McKay B, Sandhu HS (2002) Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. Spine 27(16 Suppl 1): S66–S85

    Article  Google Scholar 

  8. Sandhu HS, Kanim LE, Kabo JM, Toth JM, Zeegen EN, Liu D, Delamarter RB, Dawson EG (1996) Effective doses of recombinant human bone morphogenetic protein-2 in experimental spinal fusion. Spine 21: 2115–2122

    Article  CAS  Google Scholar 

  9. Winn SR, Uludag H, Hollinger JO (1999) Carrier systems for bone morphogenetic proteins. Clin Orthop 46: 193–202

    Google Scholar 

  10. Sandhu HS, Toth JM, Diwan AD, Seim HB, Kanim LE, Kabo JM, Turner AS (2002) Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion. Spine 27: 567–575

    Article  Google Scholar 

  11. Schimandle JH, Boden SD, Hutton WC (1995) Experimental spine fusion with recombinant human bone morphogenetic protein-2. Spine 20: 1326–1337

    Article  CAS  Google Scholar 

  12. Baskin DS, Ryan P, Sonntag V, Westmark R, Widmayer MA (2003) A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SR Allograft Ring and the ATLANTIS anterior cervical plate. Spine 28: 1219–1224

    Article  Google Scholar 

  13. Boden SD, Kang J, Sandhu H, Heller JG (2002) Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: A prospective, randomized clinical pilot trial. 2002 Volvo Award in Clinical Studies. Spine 27: 2662–2673

    Article  Google Scholar 

  14. Boden SD, Zdeblick TA, Sandhu HS, Heim SE (2000) The use of rhBMP-2 in interbody fusion cages. Spine 25: 376–381

    Article  CAS  Google Scholar 

  15. Burkus JK, Gornet MF, Dickman C, Zdeblick TA (2002) Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15: 337–349

    Google Scholar 

  16. Burkus JK, Transfeldt EE, Kitchel SH, Watkins RG, Balderston RA (2002) Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine 27: 2396–2408

    Article  Google Scholar 

  17. Burkus JK, Heim SE, Gornet MF, Zdeblick TA (2003) Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. J Spinal Disord Tech 16: 113–122

    Google Scholar 

  18. Burkus JK, Gornet MF, Schuler TC (1999) An analysis of clinical trials using rhBMP-2 as a bone graft replacement in stand-alone lumbar interbody fusions. Orthopedics 22: 669–671

    Google Scholar 

  19. Burkus JK, Sandhu HS, Gornet MF, Longley MC (2005) Use of rhBMP-2 in combination with structural cortical allografts: Clinical and radiographic outcomes in anterior lumbar spinal surgery J Bone Joint Surg Am 87: 1205–1212

    Article  Google Scholar 

  20. Dimar JR, Glassman SD, Burkus JK, Carreon LY (2006) Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine 31: 2534–2539

    Article  Google Scholar 

  21. Kleeman TJ, Ahn UM, Talbot-Kleeman A (2001) Laparoscopic anterior lumbar interbody fusion with rhBMP-2. A prospective study of clinical and radiographic outcomes. Spine 26: 2751–2756

    Article  CAS  Google Scholar 

  22. Burkus JK (2003) Stand-alone anterior lumbar interbody fusion constructs: Effect of interbody design, bone graft and bone morphogenetic protein on clinical and radiographic outcomes. In: K Lewandrowski, MJ Yaszemski, AA White, DJ Trantolo, DL Wise (eds): Advances in spinal fusion: Clinical applications of basic science, molecular biology, biomechanics, and engineering. Marcel Dekker, New York, 69–84

    Google Scholar 

  23. Akamaru T, Suh D, Boden S, Kim HS, Minamide A, Louis-Ugbo J (2003) Simple carrier matrix modifications can enhance delivery of recombinant human bone morphogenetic protein-2 for posterolateral spine fusion. Spine 28: 429–434

    Article  Google Scholar 

  24. Martin GJ Jr, Boden SD, Titus L, Scarborough NL (1999) New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine 24: 637–645

    Article  Google Scholar 

  25. Singh K, Smucker JD, Boden SD (2006) Use of recombinant human bone morphogenetic protein-2 as an adjunct in posterolateral lumbar spine fusion. A prospective CT-scan analysis at one and two years. J Spinal Disord Tech 19: 416–423

    Article  Google Scholar 

  26. Burkus JK (2004) Bone morphogenetic proteins in anterior lumbar interbody fusion: Old techniques — New technologies. J Neurosurg (Spine 1) 3: 254–260

    Article  Google Scholar 

  27. Burkus JK, Sandhu HS, Gornet MF (2006) Influence of rhBMP-2 on the healing patterns associated with allograft interbody constructs in comparison with autograft. Spine 31: 775–781

    Article  Google Scholar 

  28. Barnes B, Boden SB, Louis-Ugbo J, Tomak PR, Park J, Park M, Minamide A (2005) Lower dose of rhBMP-2 achieves spine fusion when combined with an osteoconductive bulking agent in non-human primates. Spine 30: 1127–1133

    Article  Google Scholar 

  29. Glassman SD, Carreon LY, Djurasovic M, Campbell MJ, Puno RM, Johnson JR, Dimar JR (2007) Posterolateral lumbar spine fusion with INFUSE bone graft. Spine J 7: 44–49

    Article  Google Scholar 

  30. Epstein NE (2006) A preliminary study of the efficacy of beta tricalcium phosphate as a bone expander for instrumented posterolateral lumbar fusions. J Spinal Disord Tech 19: 424–429

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Kenneth Burkus, J. (2008). Clinical outcomes using rhBMP-2 in spinal fusion applications. In: Vukicevic, S., Sampath, K.T. (eds) Bone Morphogenetic Proteins: From Local to Systemic Therapeutics. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8552-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7643-8552-1_5

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-8551-4

  • Online ISBN: 978-3-7643-8552-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics