Skip to main content

The Eigenstructure of Complex Symmetric Operators

  • Conference paper

Part of the Operator Theory: Advances and Applications book series (OT,volume 179)

Abstract

We discuss several algebraic and analytic aspects of the eigenstructure (si.e., eigenvalues, eigenvectors, and generalized eigenvectors) of complex symmetric operators. In particular, we examine the relationship between the bilinear form [x,y] = <x, Cy> induced by a conjugation C on a complex Hilbert space H and the eigenstructure of a bounded linear operator T: H → H which is C-symmetric (T = CT*C).

Keywords

  • Complex symmetric operator
  • bilinear form
  • Toeplitz matrix
  • Hankel operator
  • Riesz idempotent
  • Riesz basis
  • generalized eigenvectors.

Mathematics Subject Classification (2000)

  • 47A05
  • 47A07
  • 47A15

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christensen, O., An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.

    MATH  Google Scholar 

  2. Craven, B.D., Complex symmetric matrices, J. Austral. Math. Soc. 10 (1969), 341–354.

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Danciger, J., Garcia, S.R., Putinar, M., Variational principles for symmetric bilinear forms, Math. Nachr., to appear.

    Google Scholar 

  4. Dunford, N., Schwartz, J.T., Linear operators, Part I: General Theory, Wiley, New York, 1988.

    MATH  Google Scholar 

  5. Garcia, S.R., Conjugation and Clark operators, Contemp. Math. 393 (2006), 67–112.

    Google Scholar 

  6. Garcia, S.R., Putinar, M., Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), 1285–1315.

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Garcia, S.R., Putinar, M., Complex symmetric operators and applications II, Trans. Amer. Math. Soc. 359 (2007), 3913–3931.

    MATH  MathSciNet  Google Scholar 

  8. Halmos, P.R., A Hilbert Space Problem Book (Second Edition), Springer-Verlag, 1982.

    Google Scholar 

  9. Peller, V.V., Hankel Operators and Their Applications, Springer Monographs in Mathematics, Springer-Verlag, 2003.

    Google Scholar 

  10. Prodan, E., Garcia, S.R., Putinar, M., Norm estimates of complex symmetric operators applied to quantum systems, J. Phys. A: Math. Gen. 39 (2006), 389–400.

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Riss, U.V., Extension of the Hilbert space by J-unitary transformations, Helv. Phys. Acta 71 (1998), 288–313.

    MATH  MathSciNet  Google Scholar 

  12. Scott, N.H., A theorem on isotropic null vectors and its application to thermoelasticity, Proc. Roy. Soc. London Ser. A 440 no. 1909 (1993), 431–442.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Garcia, S.R. (2007). The Eigenstructure of Complex Symmetric Operators. In: Ball, J.A., Eidelman, Y., Helton, J.W., Olshevsky, V., Rovnyak, J. (eds) Recent Advances in Matrix and Operator Theory. Operator Theory: Advances and Applications, vol 179. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8539-2_10

Download citation