Skip to main content

Shape and Conley Index of Attractors and Isolated Invariant Sets

  • Conference paper
Differential Equations, Chaos and Variational Problems

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 75))

Abstract

This article is an exposition of several results concerning the theory of continuous dynamical systems, in which Topology plays a key role. We study homological and homotopical properties of attractors and isolated invariant compacta as well as properties of their unstable manifolds endowed with the intrinsic topology. We also provide a dynamical framework to express properties which are studied in Topology under the name of Hopf duality. Finally we see how the use of the intrinsic topology makes it possible to calculate the Conley-Zehnder equations of a Morse decomposition of an isolated invariant compactum, provided we have enough information about its unstable manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Athanassopoulos, Cohomology and asymptotic stability of 1-dimensional continua. Manuscripta Math. 72 (1991), no. 4, 415–423.

    Article  MATH  MathSciNet  Google Scholar 

  2. K. Athanassopoulos, Remarks on the region of attraction of an isolated invariant set. Colloq. Math. 104 (2006), no. 2, 157–167.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Beck, On invariant sets. Ann. of Math. (2) 67 (1958) 99–103.

    Article  MathSciNet  Google Scholar 

  4. N.P. Bhatia and G.P. Szegö, Stability theory of dynamical systems. Grundlehren der Mat. Wiss. 161, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

    Google Scholar 

  5. N.P. Bhatia, A. Lazer and G.P. Szegö, On global weak attractors in dynamical systems. J. Math. Anal. Appl. 16 (1966) 544–552.

    Article  MATH  MathSciNet  Google Scholar 

  6. S.A. Bogatyi and V. I. Gutsu, On the structure of attracting compacta. (Russian) Differentsialnye Uravneniya 25 (1989), no. 5, 907–909

    MathSciNet  Google Scholar 

  7. K. Borsuk, Theory of Retracts. Monografie Matematyczne, Warsaw, 1967

    Google Scholar 

  8. K. Borsuk, Concerning homotopy properties of compacta. Fund. Math. 62 (1968), 223–254.

    MATH  MathSciNet  Google Scholar 

  9. K. Borsuk, Theory of shape. Monografie Matematyczne, Tom 59, [Mathematical Monographs, Vol. 59], PWN-Polish Scientific Publishers, Warsaw, 1975.

    Google Scholar 

  10. C. Conley, Isolated invariant sets and the Morse index. CBMS Regional Conference Series in Mathematics, 38, American Mathematical Society, Providence, R. I., 1978.

    Google Scholar 

  11. C. Conley and E. Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Comm. Pure Appl. Math. 37 (1984), 207–253.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Dydak and J. Segal, Shape theory. An introduction. Lecture Notes in Mathematics 688, Springer, Berlin. 1978.

    Google Scholar 

  13. A. Giraldo and J. M. R. Sanjurjo, On the global structure of invariant regions of flows with asymptotically stable attractors. Mathematische Zeitschrift 232 (1999), 739–746.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Giraldo, M. A. Morón, F.R. Ruiz Del Portal, J.M.R. Sanjurjo, Some duality properties of non-saddle sets. Topology Appl. 113 (2001), 51–59.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Giraldo, M. A. Morón, F.R. Ruiz Del Portal, J.M.R. Sanjurjo, Shape of global attractors in topological spaces. Nonlinear Anal. 60 (2005), no. 5, 837–847.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Giraldo, R. Jiménez, M.A. Morón, F.R. Ruiz Del Portal, J.M.R. Sanjurjo, Pointed shape and global attractors for metrizable spaces. Preprint.

    Google Scholar 

  17. B. Günther and J. Segal, Every attractor of a flow on a manifold has the shape of a finite polyhedron. Proc. AMS 119 (1993), 321–329.

    Article  MATH  Google Scholar 

  18. H. M. Hastings, Shape theory and dynamical systems. in: N.G. Markley and W. Perizzo.: The structure of attractors in dynamical systems, Lecture Notes in Math. 668, Springer-Verlag, Berlin 1978, pp. 150–160.

    Chapter  Google Scholar 

  19. H. M. Hastings, A higher-dimensional Poincaré-Bendixson theorem. Glas. Mat. Ser. III 14(34) (1979), no. 2, 263–268.

    MathSciNet  Google Scholar 

  20. S. T. Hu, Theory of Retracts. Detroit, 1965.

    Google Scholar 

  21. L. Kapitanski and I. Rodnianski, Shape and Morse theory of attractors. Comm. Pure Appl. Math. 53 (2000), 218–242.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Mardešić and J. Segal, Shape theory. The inverse system approach. North-Holland Mathematical Library 26, North Holland, Amsterdam-NewYork, 1982.

    Google Scholar 

  23. C. McCord, Mappings and homological properties in the Conley index theory. Ergodic Theory and Dynamical Systems 8 (1988), Charles Conley Memorial Volume, 175–198.

    MATH  MathSciNet  Google Scholar 

  24. C. McCord, Poincaré-Lefschetz duality for the homology Conley index. Transactions AMS 329 (1992), 233–252.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Milnor, On the concept of Attractor. Commun. Math. Phys. 99 (1985), 177–195.

    Article  MATH  MathSciNet  Google Scholar 

  26. J. W. Robbin and D. Salamon, Dynamical systems, shape theory and the Conley index. Ergodic Theory and Dynamical Systems 8 (1988), Charles Conley Memorial Volume, 375–393.

    Article  MathSciNet  Google Scholar 

  27. K.P. Rybakowski, The homotopy index and partial differential equations. Universitext, Springer-Berlin-New York, 1987.

    MATH  Google Scholar 

  28. D. Salamon, Connected simple systems and the Conley index of isolated invariant sets. Transactions AMS 291 (1985), 1–41.

    Article  MATH  MathSciNet  Google Scholar 

  29. J. J. Sánchez-Gabites, A description without index pairs of the intrinsic topology of the ustable manifold of a compact invariant set. Preprint.

    Google Scholar 

  30. J. M. R. Sanjurjo, Multihomotopy, Čech spaces of loops and shape groups. Proc. London Math. Soc. 69 (1994), 330–344.

    Article  MATH  MathSciNet  Google Scholar 

  31. J. M. R. Sanjurjo, On the structure of uniform attractors. J. Math. Anal. Appl. 192 (1995), no. 2, 519–528.

    Article  MATH  MathSciNet  Google Scholar 

  32. J. M. R. Sanjurjo, Morse equations and unstable manifolds of isolated invariant sets. Nonlinearity 16 (2003), 1435–1448.

    Article  MATH  MathSciNet  Google Scholar 

  33. J. M. R. Sanjurjo, Lusternik-Schnirelmann category, Hopf duality, and isolated invariant sets. Bol. Soc. Mat. Mexicana (3) 10 (2004), 487–494.

    MATH  MathSciNet  Google Scholar 

  34. E. H. Spanier, Algebraic Topology. McGraw-Hill, New York-Toronto-London, 1966.

    MATH  Google Scholar 

  35. N. E. Stenrod and D. B. A. Epstein, Cohomology operations. Princeton University Press, Princeton 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to A. Cellina and J. Yorke

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Sanjurjo, J.M.R. (2007). Shape and Conley Index of Attractors and Isolated Invariant Sets. In: Staicu, V. (eds) Differential Equations, Chaos and Variational Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 75. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8482-1_29

Download citation

Publish with us

Policies and ethics