Skip to main content

Some New Concepts of Dimension

  • Conference paper
  • 2916 Accesses

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 75))

Abstract

This paper contains a review of recent results concerning some new concepts of analytical dimensions of sets and measures. We make in evidence the relationship between these new concepts and the classical once. In particular we give some results concerning estimates, variational principles and generic properties. Finally, we give some applications in the theory of iterated function systems and the theory of differential equations.

To Arrigo Cellina and James Yorke

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Auslander, J. Yorke, Intervals maps, factor of maps and chaos, Tĥoku Math. J., 32 (1980), 177–1888.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. F. Barnsley, Fractals Everywhere, Academic Press, Boston, 1993.

    MATH  Google Scholar 

  3. W. Chin, B. Hunt, J.A. Yorke, Correlation dimension for iterated function systems, Trans. Amer. Math. Soc., 349 (1989), 1783–1796.

    Article  MathSciNet  Google Scholar 

  4. C.D. Cutler, Some results on the behaviour of the fractal dimensions of distribution on attractors, J. Statist. Phys., 62 (1991), 651–708.

    Article  MathSciNet  MATH  Google Scholar 

  5. C.D. Cutler, Strong and weak duality principles for fractal dimension in Euclidean space, Math. Proc. Camb. Soc., 118 (1995), 393–410.

    MATH  MathSciNet  Google Scholar 

  6. C.D. Cutler, L. Olsen, A variational principle for the Hausdorff dimension of fractal sets, Math. Scand., 74 (1994), 64–72.

    MATH  MathSciNet  Google Scholar 

  7. R.M. Dudley, Probabilities and Metrics, Lecture Notes, Ser., 45, Aarhus University, 1978.

    Google Scholar 

  8. D. Feng, J. Wu, Category and dimension of compact subset ofn, Chinese Sci. Bull., 42 (1997), 1680–1683.

    MATH  MathSciNet  Google Scholar 

  9. C. Foias, Statistical study of Navier-Stokes equations, Rend. Sem. Mat. Univ. Padova, 49 (1973), 9–123.

    MATH  Google Scholar 

  10. O. Frostman, Potential d’équilibre et capacit’e des ensemble avec quelques application á la théorie des fonctions, Maddel. Lunds Univ. Mat. Sem., 3 (1935), 1–118.

    Google Scholar 

  11. H. Gacki, A. Lasota, J. Myjak, Upper estimate of concentration and thin dimensions of measures, (to appear).

    Google Scholar 

  12. J. Genyuk, A typical measure typically has no local dimension, Real Anal. Exchange, 23 (1997/1998), 525–537.

    MATH  MathSciNet  Google Scholar 

  13. P. M. Gruber, Upper estimate of concentration and thin dimensions of measures, Mh. Math., 108 (1989), 149–164.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Hentschel, I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors, Phys. D, 8 (1983), 435–444.

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Hengartner, R. Theodorescu, Concentration Functions, Academic Press, New York, London, 1973.

    MATH  Google Scholar 

  16. W. Hurewicz, H. Wallman, Dimension Theory, Princeton, 1941.

    Google Scholar 

  17. H. Joyce, A relationship between packing and topological dimensions, Mathematika, 45 (1998), 43–53.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Lasota, Stable and chaotic solutions of a first order partial differential equations, Nonlinear Anal. TMA, 5 (1981), 1181–1193.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Lasota, A variational principle for fractal dimensions, Nonlinear Anal., 1 (2005), 1–11.

    Google Scholar 

  20. A. Lasota, M. Mackey, M. Ważewska-Czyżewska, Minimizing therepeutically induced anemia, J. Math. Biol., 13 (1981), 1181–1193.

    Google Scholar 

  21. A. Lasota, J. Myjak, Semifractals on Polish spaces, Bull. Pol. Ac.: Math., 46 (1998), 179–196.

    MATH  MathSciNet  Google Scholar 

  22. A. Lasota, J. Myjak, Attractors of multifunctions, Bull. Pol. Ac.: Math., 50 (2000), 221–235.

    MathSciNet  Google Scholar 

  23. A. Lasota, J. Myjak, On a dimension of measures, Bull. Pol. Ac.: Math., 48 (2002), 319–334.

    MathSciNet  Google Scholar 

  24. A. Lasota, T. Szarek, Dimensions of measures invariant with respect to the Ważewska partial differential equation, J. Differential Equations, 196 (2004), 448–465.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Lasota, J. Traple, Dimension of invariant set for mappings with the squeezing property, Chaos, Solitons and Fractals, 28 (2006), 1271–1280.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Lasota, J.A. Yorke, Lower bounded technique for Markov operators and iterated function systems, Random Comput. Dynamics, 2 (1994), 41–77.

    MATH  MathSciNet  Google Scholar 

  27. P.A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Cambrigge. Philos. Soc., 42 (1946), 15–23.

    MATH  Google Scholar 

  28. J. Myjak, Some typical properies of dimensions of sets and measures, Abstract and Applied Analysis, 3 (2005), 329–333.

    MathSciNet  Google Scholar 

  29. J. Myjak, R. Rudnicki, Box and packing dimension of typical compact sets, Monatsh. Math., 131 (2000), 223–226.

    Article  MATH  MathSciNet  Google Scholar 

  30. J. Myjak, R. Rudnicki, On the typical structure of compact sets, Arch. Math., 76 (2001), 119–126.

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Myjak, R. Rudnicki, On the box dimension of typical measures, Monatsh. Math., 136 (2002), 143–150.

    Article  MATH  MathSciNet  Google Scholar 

  32. J. Myjak, R. Rudnicki, Typical properties of correlation dimension, Real Anal. Exchange, 28 (2003), 269–278.

    MATH  MathSciNet  Google Scholar 

  33. J. Myjak, R. Rudnicki, Dimension and of typical compact sets, continua and curves, Bolletino U.M.I., (8), 10-B (2007), 357–364.

    MathSciNet  Google Scholar 

  34. J. Myjak, T. Szarek, A lower estimation of the Hausdorff dimension for attractors with overlaps, J. Statist. Phys., 105 (2001), 649–657.

    Article  MATH  MathSciNet  Google Scholar 

  35. J. Myjak, T. Szarek, Estimates of capacity and self-similar measures, Ann. Polon. Math., 78 (2002), 141–157.

    MATH  MathSciNet  Google Scholar 

  36. J. Myjak, T. Szarek, On Hausdorff dimension of invariant measures arising from non-contractive iterated function systems, 181 (2002), 223–237.

    MATH  MathSciNet  Google Scholar 

  37. J. Myjak, T. Szarek, Szpilrajn type theorem for concentration dimension, Fund. Math., 172 (2002), 19–25.

    MATH  MathSciNet  Google Scholar 

  38. J. Myjak, T. Szarek, Capacity of invariant measures related to Poisson-driven stochastic differential equations, Nonlinearity, 16 (2003), 441–455.

    Article  MATH  MathSciNet  Google Scholar 

  39. J. Myjak, T. Szarek, On the Hausdorff dimension of Cantor like sets with overlaps, Chaos, Solitons and Fractals, 18 (2003), 329–333.

    Article  MATH  MathSciNet  Google Scholar 

  40. J. Myjak, T. Szarek, Some generic properties of concentration dimension of measure, Boll. Unione Mat. Ital. Sez. B, 6 (2003), 211–219.

    MATH  MathSciNet  Google Scholar 

  41. J. Myjak, T. Szarek, M. Ślęczka, Szpilrajn-Marczewski type theorem for concentration dimension on Polish spaces, Canad. Bull., 49 (2006), 247–255.

    MATH  Google Scholar 

  42. L. Olsen, A multifractal formalism, Adv. in Math., 116 (1995), 82–196.

    Article  MATH  MathSciNet  Google Scholar 

  43. Y. B. Pesin, Dimension Theory in Dynamical Systems. Contemporary views and applications, University of Chicago Press, Chicago (1997).

    Google Scholar 

  44. L. Procaccia, P. Grassberger, H. G. E. Hentschel, On the characterisation of chaotic motions, Lecture Notes in Phys., 179 (1983), 212–222.

    Google Scholar 

  45. G. Prodi, Teoremi ergodici per le equazioni della idrodinamica, C.I.M.E., Roma, 1960.

    Google Scholar 

  46. T. D. Sauer, J. A. Yorke, Are the dimensions of a set and its image equal under typical smooth functions, Ergodic Theory Dyna. Systems, 17 (1997), 941–956.

    Article  MATH  MathSciNet  Google Scholar 

  47. K. Simon, B. Solomyak, Correlation dimension for self-similar Cantor sets wirth overlaps, Fund. Math., 155 (1998), 293–300.

    MATH  MathSciNet  Google Scholar 

  48. C. Tricot, Two definitions of fractal dimensions, Math. Proc. Camb. Philos. Soc., 91 (1982), 57–74.

    Article  MATH  MathSciNet  Google Scholar 

  49. E. Szpilrajn, La dimension e la measure, Fund. Math., 27 (1937), 81–89.

    Google Scholar 

  50. L. S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems, 2 (1982), 109–124.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Myjak, J. (2007). Some New Concepts of Dimension. In: Staicu, V. (eds) Differential Equations, Chaos and Variational Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 75. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8482-1_25

Download citation

Publish with us

Policies and ethics