Skip to main content

A One-dimensional Ensemble Forecast and Assimilation System for Fog Prediction

Part of the Pageoph Topical Volumes book series (PTV)

Abstract

A probabilistic fog forecast system was designed based on two high resolution numerical 1-D models called COBEL and PAFOG. The 1-D models are coupled to several 3-D numerical weather prediction models and thus are able to consider the effects of advection. To deal with the large uncertainty inherent to fog forecasts, a whole ensemble of 1-D runs is computed using the two different numerical models and a set of different initial conditions in combination with distinct boundary conditions. Initial conditions are obtained from variational data assimilation, which optimally combines observations with a first guess taken from operational 3-D models. The design of, the ensemble scheme computes members that should fairly well represent the uncertainty of the current meteorological regime. Verification for an entire fog season reveals the importance of advection in complex terrain. The skill of 1-D fog forecasts is significantly improved if advection is considered. Thus the probabilistic forecast system has the potential to support the forecaster and therefore to provide more accurate fog forecasts.

Key words

  • Fog
  • one-dimensional
  • ensemble prediction
  • assimilation
  • model coupling
  • advection
  • verification

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballard, S., Golding, B., and Smith, R. (1991), Mesoscale model experimental forecasts of the Haar of northeast Scotland, Mon. Wea. Rev. 191, 2107–2123.

    CrossRef  Google Scholar 

  • Bergot, T., Carrer, D., Noilhan, J., and Bougeault, P. (2005), Improved site-specific numerical prediction of fog and low clouds, Weather Forecast 20, 627–646.

    CrossRef  Google Scholar 

  • Bergot, T. and Guédalia, D. (1994a), Numerical forecasting of radiation fog. part I: Numerical model and sensitivity tests, Mon. Wea. Rev. 122, 1218–1230.

    CrossRef  Google Scholar 

  • Bergot, T. and Guédalia, D. (1994b), Numerical forecasting of radiation fog. part II: A comparison of model simulations with several observed for events, Mon. Wea. Rev. 122, 1231–1246.

    CrossRef  Google Scholar 

  • Bernardet, L. R., Bogenschutz, P., Snook, J., and Loughe, A. (2005), WRF forecast over the southeast United States: Does a larger domain lead to better results? In ‘Preprints of the 6th WRF/15th MM5 users’ workshop’ 2.10, National Center for Atmospheric Research, Boulder, Co.

    Google Scholar 

  • Bott, A., Sievers, U., and Zdunkowski, W. (1990), A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics J. Atmos. Sci. 47, 2153–2166.

    CrossRef  Google Scholar 

  • Bott, A. and Trautmann, T. (2002), PAFOG—A new efficient forecast model of radiation fog and low-level stratiform clouds, Atmos. Res. 64, 191–203.

    CrossRef  Google Scholar 

  • Bott, A., Trautmann, T., and Zdunkowski, W. (1989), A numerical model of the cloud topped planetary boundary layer: Radiation, turbulence and spectral microphysics in a marine stratus, Quart. J. Roy. Meteor. Soc. 122, 635–667.

    CrossRef  Google Scholar 

  • Bouttier, F. and Courtier, P. (1999), Data assimilation concepts and methods, Technical report, European Center for Medium Range Weather Forecast ECMWF.

    Google Scholar 

  • Brown, R. (1980), A numerical study of radiation fog with an explicit formulation of the microphysics, Quart. J. Roy. Meteor. Soc. 106, 781–802.

    CrossRef  Google Scholar 

  • Brown, R. and Roach, W. T. (1976), The physics of radiation fog. part II: A numerical study, Quart. J. Roy. Meteor. Soc. 102, 335–354.

    Google Scholar 

  • Chen, F., Janjic, Z., and Mitchell, K. (1997), Impact of atmospheric surfacelayer parameterization in the new landsurface scheme of the NCEP mesoscale Eta model, Boundary-Layer Meteor, 85, 391–421.

    CrossRef  Google Scholar 

  • Dunlop, C. and Clark, P. (1997), Forcing the single column UM from the mesoscale model, Technical Report 255, UK MetOffice.

    Google Scholar 

  • Duynkerke, P. G. (1991), Radiation fog: A comparison of model simulation with detailed observations, Mon. Wea. Rev. 119, 324–341.

    CrossRef  Google Scholar 

  • Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren V., Gayno, G., and Tarpley, J. D. (2003), Implementation of NOAH land surface model advances in the National Centers for Environmental Prediction operational messoscale Eta model, J. Geophys. Res. 108, doi:10.1029/2002JD003296.

    Google Scholar 

  • Estournel, C. (1988), Etude de la phase nocturne de la couche limite atmospherique, These doctorat ďetat 1361, Université Paul Sabatier, Toulouse, France.

    Google Scholar 

  • EUROCONTROL (2006), SESAR project site, Internet: http://www.eurocontrol.int.

  • Golding, B. W. (1993), A study of the influence of terrain on fog development Mon. Wea. Rev. 121, 2529–2541.

    CrossRef  Google Scholar 

  • Gultepe, I. and Milbrandt, J. A. (2007), Microphysical observations and messoscale model simulation of a warm fog case during FRAM project, Pure Appl. Geophys. 164, 6/7, this issue.

    Google Scholar 

  • Gultepe, I., Müller, M. D. and Boybeyi Z. (2006), A new visibility parameterization for warm-fog applications in numerical weather prediction models, J. Appl. Meteor. Climat. 45(11), 1469–1480.

    CrossRef  Google Scholar 

  • Hacker, J. P. and Snyder, C. (2005), Ensemble kalman filter assimilation of fixed screen-height observations in a parameterized PBL, Mon. Wea. Rev. 133, 3260–3275.

    CrossRef  Google Scholar 

  • Ide, K., Courtier, P., Ghil, M. and Lorenc, A. C. (1997), Unified notation for data assimilation: Operational, sequential and variational, J. Meteorol. Soc. Japan 75(1B), 181–189.

    Google Scholar 

  • Janjic, Z. I. (2003), A nonhydrostatic model based on a new approach, Meteor. Atmos. Phys. 82, 271–285.

    CrossRef  Google Scholar 

  • Janjic, Z. I., Gerrity, J. P., and Nickovic, S. (2001), An alternative approach to nonhydrostatic modeling, Mon. Wea. Rev. 129, 1164–1178.

    CrossRef  Google Scholar 

  • Kadygrov, E. N. and Pick, D. R. (1988), The potential for temperature retrieval from an angular-scanning single channel microwave radiometer and some comparisons with in-situ observations, Meteor. Appl. 5, 393–404.

    CrossRef  Google Scholar 

  • Kalnay, E., Atmospheric Modeling, Data Assimilation and Predictability (Cambridge University Press, Cambridge 2003).

    Google Scholar 

  • Kessler, E. (1969), On the distribution and continuity of water substance in atmospheric circulations, Meteor. Monog. 10(32), 84.

    Google Scholar 

  • Lin, Y., Colle, B. A., and Novak, D. R. (2005), Comparison of the real-time MM5 and WRF over northeastern United States. In: ‘Preprints of the 6th WRF/15th MM5 user’ workshop’, 3.5, National Center for Atmospheric Research, Boulder, Co.

    Google Scholar 

  • Mahrt, L. and Ek, M. (1984), The influence of atmospheric stability on potential evaporation, J. Clim. Appl. Meteorol. 23, 222–234.

    CrossRef  Google Scholar 

  • Mahrt, L. and Pan, H.-L. (1984), A two-layer model of soil hydrology Bound.-Layer Meteor. 29, 1–20.

    CrossRef  Google Scholar 

  • METATMG (2005), Terms of References of the METATMG, ICAO METG, Paris.

    Google Scholar 

  • Müller, M. D. (2006), Numerical simulation of fog and radiation in complex terrain, Ph.d. Thesis, stratus 12, University of Basel.

    Google Scholar 

  • Musson-Genon, L. (1987), Numerical simulations of a fog event with a one-dimensional boundary layer model, Mon. Wea. Rev. 115, 592–607.

    CrossRef  Google Scholar 

  • Pan, H.-L. and Mahrt, L. (1987), Interaction between soil hydrology and boundary-layer development, Bound.-Layer Meteor. 48, 185–202.

    CrossRef  Google Scholar 

  • Parrish, D. F. and Derber, J. C. (1992), The national meteorological center’s spectral statisticalinterpolation analysis system, Mon. Wea. Rev. 120, 1747–1763.

    CrossRef  Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky S. A., and Vetterling, W. T., Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, New York, 1998).

    Google Scholar 

  • Schmutz, C., Schmuki, D., and Rohling, S. (2004), Aeronautical climatological information Zürich LSZH, Arbeitsbericht 201, MeteoSwiss.

    Google Scholar 

  • Siebert, J., Bott, A., and Zdunkowski, W. (1992a), Influence of a vegetation-soil model on the simulation of radiation fog, Beitr. Phys. Atmos. 65, 93–106.

    Google Scholar 

  • Siebert, J., Bott, A., and Zdunkowski, W. (1992b), A one-dimensional simulation of the interaction between land surface processes and the atmosphere, Boundary —_Layer Meteor. 59, 1–34.

    CrossRef  Google Scholar 

  • Steppeler, J., Doms, G., Schättler, U., Bitzer, H. W., Damrath, A. G., and Gregoric, G. (2003), Meso gamma scale forecasts by the nonhydrostatic models lm, Meteor. Atmos. Phys. 82, 75–96.

    CrossRef  Google Scholar 

  • Turton, J. D. and Brown, R. (1987), A comparison of a numerical model of radiation fog with detailed observations, Quart. J. Roy. Meteor. Soc. 113, 37–54.

    CrossRef  Google Scholar 

  • von Glasow, R. and Bott, A. (1999), Interaction of radiation fog with tall vegetation, Atmos. Environ 33, 1333–1346.

    CrossRef  Google Scholar 

  • Zdunkowski, W. and Barr, A. (1972), A radiative-conductive model for the prediction of radiation fog, Bound.-Layer Meteor. 3, 152–157.

    CrossRef  Google Scholar 

  • Zdunkowski, W. and Nielsen, B. (1969), A preliminary prediction analysis of radiation fog, Pure Appl. Geophys. 19, 45–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Birkhäuser Verlag

About this paper

Cite this paper

Müller, M., Schmutz, C., Parlow, E. (2007). A One-dimensional Ensemble Forecast and Assimilation System for Fog Prediction. In: Gultepe, I. (eds) Fog and Boundary Layer Clouds: Fog Visibility and Forecasting. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8419-7_9

Download citation

Publish with us

Policies and ethics