Abstract
Automated detection of fog and low stratus in nighttime satellite data has been implemented on the basis of numerous satellite systems in past decades. Commonly, differences in small-droplet emissivities at 11μm and 3.9μm are utilized. With Meteosat SEVIRI, however, this method cannot be applied with a fixed threshold due to instrument design: The 3.9μm band is exceptionally wide and overlaps with the 4μm CO2 absorption band. Therefore, the emissivity difference varies with the length of the slant atmospheric column between sensor and object. To account for this effect, the new technique presented in this paper is based on the dynamical extraction of emissivity difference thresholds for different satellite viewing zenith angles. In this way, varying concentrations of CO2 and column depths are accounted for. The new scheme is exemplified in a plausibility study and shown to provide reliable results.
Key words
- Fog
- low stratus
- satellite retrieval
- meteosat SEVIRI
- CO2 absorption
- limb effect
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Allam, R. (1987), The detection of fog from satellites, In. Proc. Workshop on Satellite and Radar Imagery Interpretation, pp. 495–505.
Aminou, D. M. A. (2002), MSG’s SEVIRI instrument, ESA Bulletin 111, 15–17.
Bendix, J. (1995), A case study on the determination of fog optical depth and liquid water path using AVHRR data and relations to fog liquid water content and horizontal visibility, Internat J. Remote Sensing 16, 515–530.
Bendix, J. (2002), A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas, Atmos. Res. 64, 3–18.
Bendix, J. and Bachmann, M. (1991), Ein operationell einsetzbares Verfahren zur Nebelerkennung auf der Basis von AVHRR-Daten der NOAA-Satelliten, Meteorologische Rundschau 43, 169–178.
Bendix, J., Thies, B., Cermak, J., and Nauss, T. (2005), Ground fog detection from space based on MODIS daytime data—A feasibility study, Weather and Forecasting 20, 989–1005.
Bendix, J., Thies, B., Nauss, T., and Cermak, J. (2006), A feasibility study of daytime fog and low stratus detection with TERRA/AQUA-MODIS overland, Meteor. Appl. 13, 111–125.
Buchwitz, M., de Beek, R., Burrows, J. P., Bovensmann, H., Warneke, T., Notholt, J., Meirink, J. F., Goede, A. P. H., Bergamaschi, P., Körner, S., Heimann, M., and Schulz, A. (2005a), Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models, Atmos. Chem. Phys. 5, 941–962.
Buchwitz, M., de Beek, R., Noël, S., Burrows, J. P., Bovensmann, H., Bremer, H., Bergamaschi, P., Körner, S., and Heimann, M. (2005b), Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: Year 2003 initial data set, Atmos. Chem. Phys. 5, 3313–3329.
Cermak, J. and Bendix, J. (2006), A novel approach to fog/low stratus detection using Meteosat 8 data, Atmos. Res. accepted.
Cermak, J., Schneebeli, M., Nowak, D., Vuilleumier, L., and Bendix, J. (2006), Characterization of low clouds with satellite and ground-based remote sensing systems, Meteorologische Zeitschrift 15, 65–72.
D’Entremont, R. and Thomason, L. (1987), Interpreting meteorological satellite images using a colorcomposite technique, Bull. Am. Meteor. Soc., 68, 762–768.
Derrien, M., Farki, B., Harang, L., LeGleau, H., Noyalet, A., Pochic, D., and Sairouni, A. (1993), Automatic cloud detection applied to NOAA-11/AVHRR imagery, Remote Sensing of Environ. 46, 246–267.
Ellrod, G. P. (1995), Advances in the detection and analysis of fog at night using goes multipectral infrared imagery, Weather and Forecasting 10, 606–619.
Eyre, J. R., Brownscombe, J. L., and Allam, R. J. (1984), Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery. Meteoro. Mag. 113, 266–271.
Gultepe, I., Pagowski, M., and Reid, J. (2007), A satellite-based fog detection scheme using screen air temperature, Weather and Forecasting 22, no. 3.
Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskel, K., and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis (Cambridge University Press, Cambridge, UK, 2001).
Hunt, G. E. (1973), Radiative properties of terrestrial clouds at visible and infra-red thermal window wavelengths, Quart. J. Roy. Meteor. Soc. 99, 346–369.
Joyce, R., Janowizk, J., and Huffman, G. (2001), Latitudinally and seasonally dependent zenith-angle corrections for geostationary satellite IR brightness temperatures. J. Appl. Meteor. 40, 689–703.
Kerkmann, J., Rosenfeld, D., Lutz, H. J., Prieto, J., and König, M. (2004), Applications of Meteosat Second Generation (MSG): Meteorological use of the SEVIRI IR3.9 channel, MSG channels interpretation guide, EUMETSAT, available online at http://oiswww.eumetsat.org/WEBOPS/msg_in-terpretation/.
Kraus, H. and Ebel, U. (1989), Atmospheric boundary layer characteristics in severe smog episodes, Meteor. Atmos, Phys. 40, 211–224.
Lee, T. E., Turk, F. J., and Richardson, K. (1997), Stratus and fog products using GOES-8-9 3.9-μm data, Weather and Forecasting 12, 664–677.
Leigh, R. J. (1995), Economic benefits of terminal aerodrome forecasts (TAFs) for Sydney airport, Australia, Meteor. Appl. 2, 239–247.
Marzban, C. (2004), The ROC curve and the area under it as performance measures, Weather and Forecasting 19, 1106–1114.
Meteo-France (2005), User manual for the PGE01-02-03 of the SAFNW/MSG: Scientific part, User manual SAF/NWC/IOP/MFL/SCI/SUM/01, EUMETSAT SAFNWC.
Minnis, P. and Khaiyer, M. M. (2000), Anisotropy of land surface skin temperature derived from satellite data. J. Appl. Meteor. 49, 1117–1129.
Pagowski, M., Gultepe, I., and King, P. (2004), Analysis and modeling of an extremely dense fog event in southern Ontario, J. Appl. Meteor. 43, 3–16.
Putsay, M., Kerényi, J., Szenyán, I., Sebok, I., Németh, P., and Diöszeghy, M. (2001), Nighttime fog and low cloud detection in NOAA-16 AVHRR images and validation with ground observed SYNOP data and radar measurements. In. Proc. 2001 EUMETSAT Meteor. Satellite Conf., EUM P33, 365–373. EUMETSAT, Antalya, Turkey.
Reudenbach, C. and Bendix, J. (1998), Experiments with a straightforward model for the spatial forecast of fog/low stratus clearance based on multi-source data, Meteor. Application. 5, 205–216.
Roach, W. T. (1994), Back to basics: Fog: Part 1—Definitions and basic physics, Weather 49, 411–415.
Smith, A. L., The Coblentz Society desk book of infrared spectra. In (Carver, C. D. ed.), The Coblentz Society Desk Book of Infrared Spectra, pp. 1–24 (The Coblentz Society, Kirkwood, MO, USA, 1982) 2nd edn.
Stephens, G. L. (2005), Cloud feedbacks in the climate system: A critical review, J. Climate, 18, 237–273.
Turner, J., Allam, R., and Maine, D. (1986), A case study of the detection of fog at night using channels 3 and 4 on the Advanced Very High Resolution Radiometer (AVHRR), Meteor. Mag. 115, 285–290.
Underwood, S. J., Ellrod, G. P., and Kuhnert, A. L. (2004), A multiple-case analysis of nocturnal radiation-fog development in the Central Valley of California utilizing the GOES nighttime fog product, J. Appl. Meteor. 43, 297–311.
Wilson, L. J. and Burrows, W. R. (2004), Spatial verification using the relative operating characteristic curve In Proc. 17th Conf. on Probability and Statistics in the Atmospheric Sciences, 2.8.1–2.8.6, Am. Meteor. Soc. Seattle, Washington, USA.
WMO (1992), International Meteorological Vocabulary, vol. 182, World Meteorological Organization (WMO), Geneva, Switzerland, 2nd edn.
WMO (1996), Guide to meteorological instruments and methods of observation, vol. 8, World Meteorological Organization (WMO), Geneva, Switzerland, 6th edn.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Birkhäuser Verlag
About this paper
Cite this paper
Cermak, J., Bendix, J. (2007). Dynamical Nighttime Fog/Low Stratus Detection Based on Meteosat SEVIRI Data: A Feasibility Study. In: Gultepe, I. (eds) Fog and Boundary Layer Clouds: Fog Visibility and Forecasting. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8419-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-7643-8419-7_5
Received:
Accepted:
Published:
Publisher Name: Birkhäuser Basel
Print ISBN: 978-3-7643-8418-0
Online ISBN: 978-3-7643-8419-7
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)
