Skip to main content

Microphysical Observations and Mesoscale Model Simulation of a Warm Fog Case during FRAM Project

Part of the Pageoph Topical Volumes book series (PTV)

Abstract

The objective of this work is to apply a new microphysical parameterization for fog visibility for potential use in numerical weather forecast simulations, and to compare the results with ground-based observations. The observations from the Fog Remote Sensing And Modeling (FRAM) field which took place during the winter of 2005–2006 over southern Ontario, Canada (Phase I) were used in the analysis. The liquid water content (LWC), droplet number concentration (Nd), and temperature (T) were obtained from the fog measuring device (FMD) spectra and Rosemount probe, correspondingly. The visibility (Vis) from a visibility meter, liquid water path from microwave radiometers (MWR), and inferred fog properties such as mean volume diameter, LWC, and Nd were also used in the analysis. The results showed that Vis is nonlinearly related to both LWC and Nd. Comparisons between newly derived parameterizations and the ones already in use as a function of LWC suggested that if models can predict the total Nd and LWC at each time step using a detailed microphysics parameterization, Vis can then be calculated for warm fog conditions. Using outputs from the Canadian Mesoscale Compressible Community (MC2) model, being tested with a new multi-moment bulk microphysical scheme, the new Vis parameterization resulted in more accurate Vis values where the correction reached up to 20–50%.

Key words

  • Fog microphysics
  • fog parameterization
  • fog forecasting
  • fog remote sensing

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belair, S., Crevier, L.-P., Mailhot, J., Bilodeau, B., and Delage, Y. (2003a), Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results, J. Hydrometeor. 4, 352–370.

    CrossRef  Google Scholar 

  • Belair, S., Brown, R., Mailhot, J., Bilodeau, B., and Crevier, L.-P. (2003b), Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. J. Hydrometeor. 4, 371–386.

    CrossRef  Google Scholar 

  • Belair, S., Mailhot, J., Girard, C., and Vaillancourt, P. (2005), Boundary layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system, Mon. Wea. Rev. 133, 1938–1960.

    CrossRef  Google Scholar 

  • Benjamin, S. G., Devenyi, D., Weygandt, S. S., Brundage, K. J., Brown, J. M., Grell, G. A., Kim, D., Schwartz, B. E., Smirnova, T. G., Smith, T. L., and Manikin, G. S. (2004), An hourly assimilation-forecast cycle: The RUC, Mon. Wea. Rev. 132, 495–518.

    CrossRef  Google Scholar 

  • Benoit, R., Cote, J., and Mailhot, J. (1989), Inclusion of a TKE boundary layer parameterization in the Canadian regional finit-element model, Mon. Wea. Rev. 117, 1726–1750.

    CrossRef  Google Scholar 

  • Benoit, R., Desgagne, J.M., Pellerin, P., Pellerin, S., Chartier, Y., and Desjardins, S. (1997), The Canadian MC2: A semi-Lagrangian, semi-implicit wideband atmospheric model suited for fine scale process studies and simulation, Mon. Wea. Rev. 125, 2382–2415.

    CrossRef  Google Scholar 

  • Brown T. and Pomeroy J.W. (1989). A blowing snow particle detector. J. Cold Regions Science and Technology, 16, 167–174.

    CrossRef  Google Scholar 

  • Bott, A. and Trautmann, T. (2002), PAFOG—A new efficient forecast model of radiation fog and low-level stratiform clouds, Atmos. Res. 64, 191–203.

    CrossRef  Google Scholar 

  • Brenguier, J. L., Pawlowska, H., Schuller, L., Preusker, R., Fischer, J., and Fouquart, Y. (2000), Radiative properties of boundary layer clouds: Dropplet effective radius versus number concentration, J. Atmos. Sci. 57, 803–821.

    CrossRef  Google Scholar 

  • Cheng, W. Y. Y. and Steenburgh, W. J. (2005), Evaluation of Surface Sensible Weather Forecasts by the WRF and the Eta Models over the Western United States, Weather and Forecasting 20, 812–821.

    CrossRef  Google Scholar 

  • Cote, J., Gravel, S., Methot, A., Patoine, A., Roach, M., and Staniforth, A. (1998), The operational CMC-MRB Global Environmental Multiscale (GEM) model: Part I—Design considerations and formulation, Mon. Wea. Rev. 126, 1373–1395.

    CrossRef  Google Scholar 

  • Ellrod, G. P. (1995), Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery, Weather and Forecasting, 10, 606–619.

    CrossRef  Google Scholar 

  • Fouquart, Y. and Bonnel, B. (1980), Computations of solar heating of the earth’s atmosphere: A new parameterization, Contrib. Atmos. Phys. 53, 35–62.

    Google Scholar 

  • Garand, L. and Mailhot, J. (1990), The influences of infrared radiation on numerical weather forecasts, Preprints, Seventh Conf. on Atmospheric Radiation, San Francisco, CA, Amer. Meteor. Soc. J146–151.

    Google Scholar 

  • Gultepe, I., Isaac, G. A., Leaitch, W. R., and Banic, C. M. (1996), Parameterization of marine stratus microphysics based on in-situ observations: Implications for GCMs, J. Climate 9, 345–357.

    CrossRef  Google Scholar 

  • Gultepe, I. and Isaac, G. A. (1999), Scale effects on averaging of cloud droplet and aerosol number concentrations: Observations and models, J. Climate 12, 1268–1279.

    CrossRef  Google Scholar 

  • Gultepe, I., Isaac, G. A., and Strawbridge, K. (2001), Variability of cloud microphysical and optical parameters obtained from aircraft and satellite remote sensing during RACE, Inter. J. Climate 21, 4, 507–525.

    CrossRef  Google Scholar 

  • Gultepe, I. and Isaac, G. A. (2004), An analysis of cloud droplet number concentration (Nd) for climate studies: Emphasis on constant Nd. Q. J. Royal Met. Soc. 130, Part A, 602, 2377.

    CrossRef  Google Scholar 

  • Gultepe, I., Muller, M. D., and Boybey, Z. (2006a), A new warm fog parameterization scheme for numerical weather prediction models, J. Appl. Meteor. 45, 1469–1480.

    CrossRef  Google Scholar 

  • Gultepe, I, Cober, S. G., King, P., Isaac, G., Taylor, P., and Hansen, B. (2006b), The Fog Remote Sensing and Modeling (FRAM) Field Project And Preliminary Results, AMS 12th Cloud Physics Conference, July 9–14, 2006, Madison, Wisconsin, USA, Print in CD, P4.3.

    Google Scholar 

  • Gultepe, I., Pagowski, M., and Reid, J. (2007), S satellite based fog detection scheme using screen air temperature, J. Weather and Forecasting, in press.

    Google Scholar 

  • Issaac, G. A., Bailey, M., Cober, S. G., Donaldson, N., Driedger, N., Glazer, A., Gultepe, I, Hudak, D., Korolev, A., Reid, J., Rodriguez, P., Strapp, J. W., and Fabry, F. (2006), Airport Vicinity Icing and Snow Advisor. AIAA 44th Aerospace Sci. Meeting and Exhibit, Reno Nevada, 9–12 January 2006, AIAA-2006-1219.

    Google Scholar 

  • Jiusto, J. E., Fog structure. Clouds, Their Formation, Optical Properties, and Effects (P. V. Hobbs and A. Deepak, eds.) (Academic Press 1981), pp. 187–239.

    Google Scholar 

  • Koening, L. R. (1971), Numerical experiments pertaining to warm-fog clearing, Mon. Wea. Rev. 9, 227–241.

    CrossRef  Google Scholar 

  • Kunkel, B. A. (1984), Parameterization of droplet terminal velocity and extinction coefficient in fog models, J. Appl. Meteor. 23, 34–41.

    CrossRef  Google Scholar 

  • Mailhot, J. and Coauthors , (1998), Scientific description of RPN physics library—Version 3.6. Recherche en prévision numérique, 188 pp. (Available online at http://collaboration.cmc.ec.gc.ca/science/rpn/physics/physics98.pdf)

  • Meyer, M. B., Jiusto, J. E., and Lala, G. G. (1980), Measurements of visual range and radiation-fog (haze) microphysics, J. Atmos. Sci. 37, 622–629.

    CrossRef  Google Scholar 

  • Milbrandt, J. A., and Yau, M. K. (2005a), A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter, J. Atmos. Sci. 62, 3051–3064.

    CrossRef  Google Scholar 

  • Milbrant, J.A. and Yau, M.K. (2005b), A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description, J. Atmos. Sci. 62, 3065–3081.

    CrossRef  Google Scholar 

  • Savelyev, S. A., Gordon, M., Hanesiak, J., papakourioki, T., and Taylor P. A. (2006) Blowing snow studies in CASES Canadian Arctic Shelf Exchange Study (CASES). Hydrological Processing, 4, 817–827.

    CrossRef  Google Scholar 

  • Stoelinga, M. T. and Warner, T. T. (1999). Nonhydrostatic, Mesobeta-scale model simulations of cloud ceiling and visibility for an east coast winter precipitation event, J. Appl. Meteor. 38, 385–404.

    CrossRef  Google Scholar 

  • Thomas, S.J., Girard, C., Benoit, R., Desgagne, M., and Pellerin, P. (1998), A new adiabatic kernel for the MC2 model, Atmos.-Ocean 36, 241–270.

    Google Scholar 

  • Whiffen, B. (2001), Fog: Impact on aviation and goals for meteorological prediction. 2nd Conf. on Fog and Fog Collection, St. John’s Canada, 15–20 July, 2001, 525–528.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Birkhäuser Verlag

About this paper

Cite this paper

Gultepe, I., Milbrandt, J. (2007). Microphysical Observations and Mesoscale Model Simulation of a Warm Fog Case during FRAM Project. In: Gultepe, I. (eds) Fog and Boundary Layer Clouds: Fog Visibility and Forecasting. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8419-7_4

Download citation

Publish with us

Policies and ethics