Skip to main content

Fog Research: A Review of Past Achievements and Future Perspectives

  • Conference paper

Part of the Pageoph Topical Volumes book series (PTV)

Abstract

The scientific community that includes meteorologists, physical scientists, engineers, medical doctors, biologists, and environmentalists has shown interest in a better understanding of fog for years because of its effects on, directly or indirectly, the daily life of human beings. The total economic losses associated with the impact of the presence of fog on aviation, marine and land transportation can be comparable to those of tornadoes or, in some cases, winter storms and hurricanes. The number of articles including the word “fog” in Journals of American Meteorological Society alone was found to be about 4700, indicating that there is substantial interest in this subject. In spite of this extensive body of work, our ability to accurately forecast/nowcast fog remains limited due to our incomplete understanding of the fog processes over various time and space scales. Fog processes involve droplet microphysics, aerosol chemistry, radiation, turbulence, large/small-scale dynamics, and surface conditions (e.g., partaining to the presence of ice, snow, liquid, plants, and various types of soil). This review paper summarizes past achievements related to the understanding of fog formation, development and decay, and in this respect, the analysis of observations and the development of forecasting models and remote sensing methods are discussed in detail. Finally, future perspectives for fog-related research are highlighted.

Key words

  • Fog review
  • fog observations
  • fog modeling
  • fog remote sensing
  • for forecasting

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allam, R. (1987). The detection of fog from satellites, In Satellite and Radar Imagery Interpretation, preprints for a Workshop on Satellite and Radar Imagery Interpretation, Meteorological Office College, Shinfield Park, Berkshire, England, 20–24 July, 1987, Darmstadt Eberstadt, West Germany: EUMETSAT, 1987, 495–505.

    Google Scholar 

  • Alumallim, H., Kaneda, S., and Akiba, Y. (2001), Development and applications of decision trees [Chapter 3]. In Expert Systems (ed. C.T. Leondes), vol. 1, 53–77. (Elsevier).

    Google Scholar 

  • Aratus In Callimachus and Lycrophon, Aratus (W. Heinemann, London, and Harvard University Press, Cambridge, Mass. 1921), 644 pp.

    Google Scholar 

  • Aristotle Meteorologica (London, W. Heinemann, and Cambridge, Harvard University Press 1962).

    Google Scholar 

  • Azevedo, A. and Morgan, D.L. (1974), Fog precipitation in coastal California forests, Ecology 55, 1135–1141.

    Google Scholar 

  • Ballard, S., Golding, B., and Smith, R. (1991), Mesoscale model experimental forecasts of the Haar of northeast Scotland. Monthly Weather Rev. 191, 2107–2123.

    Google Scholar 

  • Banta, R.M. (1990), The role of mountain flows in making clouds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., 23, Am. Meteor. Soc. 229–282.

    Google Scholar 

  • Barber, T.L. and Larson, D.R. (1985), Visibility related backscatter at 1.06 μm, Appl. Optics 24, 3523–3525

    CrossRef  Google Scholar 

  • Bendix, J. and Bachmann, M. (1991), Ein operationell einsetzbares Verfahren zur Nebelerkennung auf der Basis von AVHRR-Daten der NOAA-Satelliten, Meteorologische Rundschau 43, 169–178.

    Google Scholar 

  • Bendix, J. (1994), Fog climatology of the Po Valley, Rivista di Meteorologia Aeronautica 54, N.3–4, 25–36.

    Google Scholar 

  • Bendix, J. (1995a), A case study on the determination of fog optical depth and liquid water path using AVHRR data and relations to fog liquid water content and horizontal visibility, Internat. J. Remote Sensing 16, 515–530.

    Google Scholar 

  • Bendix, J. (1995b), Ground fog or low level stratus: Decision-making using AVHRR data. In Proc. 1995 Meteorol. Satellite Data Users’ Conf. 385–392, Winchester, U.K.

    Google Scholar 

  • Bendix, J. (2002), A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas, Atmos. Res. 64, 3–18.

    Google Scholar 

  • Bendix, J., Thies, B., Nauss, T., and Čermak, J. (2006), A feasibility study of daytime fog and low stratus detection with TERRA/AQUA-MODIS over land, Meteorol. Applications 13, 111–125.

    Google Scholar 

  • Bergot, T. and Guédalia, D. (1994), Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests, Monthly Weather Rev. 122, 1218–1230.

    Google Scholar 

  • Bergot, T., Carrer, D., Noilhan, J., and Bougeault, P. (2005), Improved site-specific numerical prediction of fog and low clouds: A feasibility study, Weather and Forecasting 20, 627–646.

    Google Scholar 

  • Bissonette, L.R. (1992), Imaging through fog and rain, Opt. Eng. 31, 1045–1052.

    Google Scholar 

  • Bocchieri, J.R., Crisci, R.L., Glahn, H.R., Lewis, F., and Globokar, F.T. (1974), Recent developments in automated prediction of ceiling and visibility, J. Appl. Meteor. 13, 277–288.

    Google Scholar 

  • Bonancina, L.C.W. (1925), Notes on the fog of January 10th–12th, 1925, Meteor. Mag. 60, 7–8.

    Google Scholar 

  • Bott, A., Sievers, U., and Zdunkowski, W. (1991), A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics, J. Atmos. Sci. 47, 2153–2166.

    Google Scholar 

  • Bott, A. (1991), On the influence of the physico-chemical properties of aerosols on the life cycle of radiation fogs, Bound.-Layer Meteor. 56, 1–31.

    Google Scholar 

  • Bott, A. and Trautmann, T. (2002), PAFOG—a new efficient forecast model of radiation fog and low-level stratiform clouds, Atmospheric Research 64, 191–203.

    Google Scholar 

  • Bowling, S.A., Ohtake, T., and Benson, C.S. (1968), Winter pressure systems and ice fog in Fairbanks, Alaska, J. Appl. Meteor. 7, 961–968.

    Google Scholar 

  • Bremnes, J.B. and Michaelides, S.C. (2007), Probabilistic visibility forecasting using neural networks, Pure Appl. Geophys. 164, 7/8, this issue.

    Google Scholar 

  • Bretherton, C.S., Krueger, S.K., Wyant, M.C., Bechtold, P., Van Meijgaard, E., Stevens, B., and Teixeira, J. (1999), A GCSS boundary layer model inter-comparison study of the first ASTEX Lagrangian experiment, Bound. Layer Meteor. 93, 341–380.

    Google Scholar 

  • Brown, R. and Roach, W.T. (1976), The physics of radiation fog: II—A numerical study, Quart. J. Roy. Meteor. Soc. 102, 335–354.

    Google Scholar 

  • Brown, R. (1980), A numerical study of radiation fog with an explicit formulation of the microphysics, Quart. J. Roy. Meteor. Soc. 106, 781–802.

    Google Scholar 

  • Byers, H.R., General Meteorology, Third Ed., (McGraw Hill, New York 1959).

    Google Scholar 

  • Cermak, J. (2006), SOFOS—A New Satellite-based Operational Fog Observation Scheme Ph.D. Thesis, Philipps-Universität Marburg, Germany.

    Google Scholar 

  • Cermak, J. and Bendix, J. (2007a), Dynamical nighttime fog/low stratus detection based on Meteosat SEVIRI data—a feasibility study. Pure Appl. Geophys. 164, 7/8, this issue.

    Google Scholar 

  • Cermak, J. and Bendix, J. (2007b), A novel approach to fog/low stratus detection using Meteosat 8 data, Atmos. Res. in press.

    Google Scholar 

  • Cewcom (1977), Cooperative experimental in West Coast oceanography and meteorology, Multi-platform marine fog study, Bull. Am. Meteor. Soc., 58, 1226–1227.

    Google Scholar 

  • Choularton, T.W., Fullarton, G., Latham, J., Mill, C.S., Smith, M.H., and Stromberg, I.M. (1981), A field study of radiation fog in Meppen, West Germany, Quart. J. Roy. Meteor. Soc. 107, 381–394.

    Google Scholar 

  • Cho, Y.-K., Kim, M.-O., and Kim, B.-C. (2000), Sea fog around the Korean Peninsula. J. Appl. Meteor. 39, 2473–2479.

    Google Scholar 

  • Clark P.A. and Hopwood, W.P. (2001), One-dimensional site-specific forecasting of radiation fog. Part 1: Model formulation and idealized sensitivity studies, Meteor. Applications 8, 279–286.

    Google Scholar 

  • Charlton, R.B. and Park, C. (1984), Observations of industrial fog, cloud, and preciptation on very cold days, Atmos. and Ocean 22, 106–121.

    Google Scholar 

  • Colquhoun, J.R. (1987), A decision tree method for forecasting thunderstorms and tornadoes, Weather and Forecasting 2, 337–345.

    Google Scholar 

  • Costa, S.B., Carvalho, F.O., Amorim, R.F.C., Campos, A.M.V., Ribeiro, J.C., Carvalho, V.N., and dos Santos, D.M.B. (2006), Fog forecast for the international airport of Maceió, Brazil using artificial neural network, Proc. 8th ICSHMO, Foz do Iguaçu, Brazil, 24–28 April, 2006, INPE, 1741–1750.

    Google Scholar 

  • Craddock, J.M. and Pritchard, D.L. (1951), Forecasting the formation of radiation fog—A preliminary approach, Met. Res. Pap. No. 624 (Meteorological Office, United Kingdom)

    Google Scholar 

  • Croft, P.J., Pfost, R.L., Medlin J.M., and Johnson, G.A. (1997), Fog forecasting for the Southern Region: A conceptual model approach, Weather and Forecasting 12, 545–556.

    Google Scholar 

  • D’Entremont, R. and Thomason, L. (1987), Interpreting meteorological satellite images using a colorcomposite technique, Bull. Am. Meteor. Soc. 68, 762–768.

    Google Scholar 

  • Derrien, M., Farki, B., Harang, L., LeGleau, H., Noyalet, A., Pochic, D., and Sairouni, A. (1993), Automatic cloud detection applied to NOAA-11/AVHRR imagery, Remote Sensing of Environment 46, 246–267.

    Google Scholar 

  • Dickson, D.R. and Vern Hales, J. (1963), Computation of visual range in fog and low clouds, J. Appl. Meteor. 2, 281–285.

    Google Scholar 

  • Donaldson, N.R. and Stewart, R.E. (1993), Fog induced by mixed-phase precipitation, Atmos. Res. 29, 9–25.

    Google Scholar 

  • Duynkerke, P.G. (1991) Radiation fog: A comparison of model simulation with detailed observations, Monthly Weather Rev. 119, 324–341.

    Google Scholar 

  • Duynkerke, P.G. and Hignett, P. (1993), Simulation of diurnal variation in a stratocumulus-capped marine boundary layer during FIRE, Monthly Weather Rev. 121, 3291–3300.

    Google Scholar 

  • Duynkerke, P.G. (1999) Turbulence, radiation and fog in Dutch stable boundary layers, Bound.-Layer Meteor. 90, 447–477.

    Google Scholar 

  • Duynkerke, P.G., Jonker, P.J., Chlond, A., Van Zanten, M.C., Cuxart, J., Clark, P., Sanchez, E., Martin, G., Lenderink, G., and Teixeira, J. (1999), Intercomparison of three-and one-dimensional model simulations and aircraft observations of stratocumulus, Bound. Layer Meteorol. 92, 453–487.

    Google Scholar 

  • Eldridge, R.G. (1971), The relationship between visibility and liquid water content of fog. J. Atmos. Sci. 28, 1183–1186.

    Google Scholar 

  • Ellrod, G.P. (1995), Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery, Weather and Forecasting 10, 606–619.

    Google Scholar 

  • Ellrod, G.P. (2002), Estimation of low cloud base heights at night from satellite infrared and surface temperature data, National Weather Digest 26, 39–44.

    Google Scholar 

  • Ellrod, G.P. and G-upultepe, I. (2007), Inferring low cloudbase heights at night for aviation using satellite infrared and surface temperature data. Pure Appl. Geophys. 164, 7/8, in this issue.

    Google Scholar 

  • Eyre, J.R., Brownscombe, J.L. and Allam, R.J. (1984), Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery, Meteor., Mag. 113, 266–271.

    Google Scholar 

  • Findlater, J. (1985), Field investigations of radiation fog formation at outstations, Meteor. Mag. 114, 187–201.

    Google Scholar 

  • Findlater, J., Roach, W.T., and McHugh, B.C. (1989), The Haar of North-East Scotland, Quart. J. Roy. Meteor. Soc. 115, 581–608.

    Google Scholar 

  • Fitzjarrald, D.R. and Lala, G.G. (1989), Hudson Valley Fog Environments, J Appl. Meteor. 28, 1303–1328.

    Google Scholar 

  • Fisk, C. (2004), Two-way (Hour-Month) Time Section Plots as a Tool for Climatological Visualization and Summarization, 14th Conf. Appl. Climatology, Am. Meteor. Soc. 11–15 january 2004, Seattle, Washington.

    Google Scholar 

  • Foitzik, L. (1947), Theorie der Schrägsicht. Zeitchrift für Meteorologie 6, 161–175.

    Google Scholar 

  • Forthun, G.M., Johnson, M.B., Schmitz, W.G., Blume, J., and Caldwell, R.J. (2006), Trends in fog frequency and duration in the southeast United States, Phys. Geography 27, 206–222.

    Google Scholar 

  • Friedlein, M.T. (2004), Dense fog climatology. Chicago O’Hare International Airport, July 1996–April 2002, Bull. Am. Meteor. Soc., 85, 515–517.

    Google Scholar 

  • Fuzzi, S., Facchini, M.C., Orsi, G., Lind, J.A., Wobrock, W., Kessel, M., Maser, R., Jaeschke, W., Enderle, K.H., Arends, B.G., Berner, A., Solly, A., Kruisz, C., Reischl, G., Pahl, S., Kaminski, U., Winkler, P., Ogren, J.A., Noone, K.J., Hallberg, A., Fierlinger-Oberlinninger, H., Puxbaum, H., Marzorati, A., Hansson, H.-C., Wiedensohler, A., Svenningsson, I.B., Martinsson, B.G., Schell, D., and Georgii, H.W. (1992), The Po Valley fog experiment 1989. An overview, Tellus 44B, 448–468.

    Google Scholar 

  • Fuzzi, S., Laj, P., Ricci, L., Orsi, G., Heintzenberg, J., Wendisch, M., Yuskiewicz, B., Mertes, S., Orsini, D., Schwanz, M., Wiedensohler, A., Stratmann, F., Berg, O.H., Swietlicki, E., Frank, G., Martinsson, B.G., Günther, A., Dierssen, J.P., Schell, D., Jaeschke, W., Berner, A., Dusek, U., Galambos, Z., Kruisz, C., Mesfin, N.S., Wobrock, W., Arends, B., and Ten B.H., (1998), Overivew of the Po Valley fog experiment 1994 (Chemdrop), Contr. Atmos. Phys. 71, 3–19.

    Google Scholar 

  • Garcia-Garcia, F., Virafuentes, U., and Montero-Martinez, G. (2002), Fine-scale measurements of fog-droplet concentrations: A preliminary assessment, Atmos Res. 64, 179–189.

    Google Scholar 

  • Gardner, M.W. and Dorling, S.R. (1998), Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences, Atmos. Environ. 32, 2627–2636.

    Google Scholar 

  • Gazzi, M., Vincentini, V., and Pesci, C. (1997), Dependence of a black target’s apparent luminance on fog droplet size distribution, Atmos. Environ. 31, 3441–3447.

    Google Scholar 

  • Gazzi, M., Georgiadis, T. and Vincentini, V. (2001), Distant contrast measurements through fog and thick haze, Atmos. Environ. 35, 5143–5149.

    Google Scholar 

  • Georgii, W. (1920), Die Ursachen der Nebelbildung, Annalen der Hydrographie und Maritimen Meteorologie 48, 207–222.

    Google Scholar 

  • George, J.J. (1940a), Fog: Its causes and forecasting with special reference to eastern and southern United States (I), Bull. Am. Meteor. Soc. 21, 135–148.

    Google Scholar 

  • George, J.J. (1940b), Fog: Its causes and forecasting with special reference to eastern and southern United States (I) Bull. Am. Meteor. Soc. 21, 261–269.

    Google Scholar 

  • George, J.J. (1940c), Fog: Its causes and forecasting with special reference to eastern and southern United States (I) Bull. Am. Meteor. Soc. 21, 285–291.

    Google Scholar 

  • Gerber, H.E. (1981), Microstructure of a radiation fog, J. Atmos. Sci. 38, 454–458.

    Google Scholar 

  • Gerber, H. (1991), Supersaturation and droplet spectral evolution in fog, J. Atmos. Sci. 48, 2569–2588.

    Google Scholar 

  • Girard, E. and Blanchet, J.-P. (2001), Simulation of arctic diamond dust, ice fog, and thin stratus using an explicit aerosol-cloud-radiation model, J. Atmos. Sci. 58, 1199–1221.

    Google Scholar 

  • Glahn, H.R. and Lowry, D.A. (1972), The use of model output statistics (MOS) in objective weather forecasting, J. Appl. Meteor. 11, 1203–1211.

    Google Scholar 

  • Golding, B.W. (1993), A study of the influence of terrain on fog development. Monthly Weather Rev. 121, 2529–2541.

    Google Scholar 

  • Gotaas, Y. and Benson, C.S. (1965), The effect of suspended ice crystals on radiative cooling, J. Appl. Meteor. 4, 446–453.

    Google Scholar 

  • Granath, L.P. and Hulburt, E.O. (1929), The absorption of light by fog, Phys. Rev. 34, 140–144.

    Google Scholar 

  • Guédalia, D. and Bergot, T. (1994), Numerical forecasting of radiation fog. Part II: A comparison of model simulations with several observed fog events, Monthly Weather Rev. 122, 1231–1246.

    Google Scholar 

  • Güls, I. and Bendix, J. (1996), Fog detection and fog mapping using low cost Meteosat-WEFAX transmission, Meteor. Applications 3, 179–187.

    CrossRef  Google Scholar 

  • Gultepe, I. and Isaac, G.A., (1997), Relationship between liquid water content and temperature based on aircraft observations and its applicability to GCMs, J. Climate 10, 446–452.

    Google Scholar 

  • Gultepe, I. and Isaac, G.A. (1999), Scale effects on averaging of cloud droplet and aerosol number concentrations: observations and models, J. Climate 12, 1268–1279.

    Google Scholar 

  • Gultepe, I., Isaac, G.A., and Cober, S.G. (2001), Ice crystal number concentration versus temperature for climate studies, Inter. J. of Climatology 21, 1281–1302.

    Google Scholar 

  • Gultepe, I., Isaac, G.A., and Cober, S.G. (2002), Cloud microphysical characteristics versus temperature for three Canadian field projects, Annales Geophysicae 20, 1891–1898.

    Google Scholar 

  • Gultepe, I., Isaac, G., MacPherson, I., Marcotte, D., and Strawbridge, K. (2003), Characteristics of moisture and heat fluxes over leads and polynyas, and their effect on Arctic clouds during FIRE.ACE, Atmos. and Ocean 41, 15–34.

    Google Scholar 

  • Gultepe, I., and Isaac, G. (2004), An analysis of cloud droplet number concentration (Nd) for climate studies: Emphasis on constant Nd, Quart. J. Roy. Meteor. Soc. 130, Part A, 2377–2390.

    Google Scholar 

  • Gultepe, I., Müller, M.D., and Boybeyi, Z. (2006a), A new warm fog parameterization scheme for numerical weather prediction models, J. Appl. Meteor. 45, 1469–1480.

    CrossRef  Google Scholar 

  • Gultepe, I., Cober, S.G., King, P., Isaac, G., Taylor, P., and Hansen, B. (2006b), The Fog Remote Sensing and Modeling (FRAM) Field Project And Preliminary Results, AMS 12th Cloud Physics Conference, July 9–14, 2006, Madison Wisconsin, USA, Print in CD, P4.3.

    Google Scholar 

  • Gultepe, I., and Milbrandt, J. (2007), Microphysical observations and mesoscale model simulation of a warm fog case during FRAM project, Pure Appl. Geophys. 164, 7/8, this issue.

    Google Scholar 

  • Gultepe, I., and Isaac, C.A. (2007), Cloud fraction parameterization as a function of mean cloud water content and its variance using in-situ observation, Geophys. Res. Lett., 34, L07801, doi:10.1029/ 2006GL028223.

    Google Scholar 

  • Gultepe, I., Pagowski, M., and Reid, J. (2007a), Using surface data to validate a satellite based fog detection scheme, Weather and Forecasting, in press.

    Google Scholar 

  • Gultepe, I., Cober, S.G., Isaac, G.A., Hudak, D., King, P., Taylor, P., Gordon, M., Rodriguez, P., Hansen, B., and Jacob, M. (2007b), The fog remote sensing and modeling (FRAM) field project and preliminary results, Bull. Am. Meteor. Soc. accepted preproposal.

    Google Scholar 

  • Hanesiak, J.M., and Wang, X.L. (2005), Adverse-weather trends in the Canadian Arctic, J. Climate 18, 3140–3156.

    Google Scholar 

  • Hansen, B.K. (2000), Analog forecasting of ceiling and visibility using fuzzy sets, 2nd Conference on Artificial Intelligence, American Meteorological Society, 1–7.

    Google Scholar 

  • Hansen, B., Gultepe, I., King, P., Toth, G., and Mooney, C. (2007), Visualization of seasonal-diurnal climatology of visibility in fog and precipitation at Canadian airports, AMS Annual Meeting, 16th Conf. Appl. climatology, San Antonio, Texas, 14–18 January, 2007, CD.

    Google Scholar 

  • Hardwick, W.C. (1973), Monthly fog frequency in the continental United States, Monthly Weather Rev. 101, 763–766.

    Google Scholar 

  • Heidinger, A.K., and Stephens, G.L. (2000), Molecular line absorption in a scattering atmosphere. Part II: Application to remote sensing in the O2 A-band, J. Atmos. Sci. 57, 1615–1634.

    Google Scholar 

  • Herzegh, P., Wiener, G., Bankert, R., Benjamin, S., Bateman, R., Cowie, J., Hadjimichael, M., Tryhane, M., and Weekley, B. (2006), Development of FAA National Ceiling and Visibility products: Challenges, strategies and progress, Perprints 12th Conference on Aviation Range and Aerospace Meteorology, Am. Meteor. Soc., Atlanta, CA, 30. Jan.–2 Feb., 2006. P1.17 in CD version.

    Google Scholar 

  • Hilliker, J.L. and Fritsch, J.M. (1999), An observations-based statistical system for warm-season hourly probabilistic forecasts of low ceiling at the San Francisco International Airport, J. Appl. Meteor. 38, 1692–1705.

    Google Scholar 

  • Hsieh, W.W. and Tang, B. (1998), Applying neural network models to prediction and data analysis in meteorology and oceanography, Bull. Am. Meteor. Soc. 79, 1855–1870.

    Google Scholar 

  • Holets, S. and Swanson, R.N. (1981), High-inversion fog episodes in Central California, J. Appl. Meteor. 20, 890–899.

    Google Scholar 

  • Houghton, H.G. (1931), The transmission of visible light through fog, Physical Rev. 38, 152–158.

    Google Scholar 

  • Houghton, H.G. and Radford, W.H. (1938), On the local dissipation of warm fog. Papers Phys. Ocean. Meteor. 6, 3, 63 pp.

    Google Scholar 

  • Hudson, J.G. (1980), Relationship between fog condensation nuclei and fog microstructure, J. Atmos. Sci. 37, 1854–1867.

    Google Scholar 

  • Hunt, G.E. (1973), Radiative properties of terrestrial clouds at visible and infrared thermal window wavelengths, Quart. J. Roy. Meteor. Soc. 99, 346–369.

    Google Scholar 

  • Hutchison, K.D., Pekker, T., and Smith, S. (2006), Improved retrievals of cloud boundaries from modis for use in air quality modeling, Atmos. Environ. 40, 5798–5806.

    Google Scholar 

  • Hyvarinen, O., Julkunen, J., and Nietosvaara, V. (2007), climatological tools for low visibility forecasting, Pure Appl. Geophys. 164, 7/8, this issue.

    Google Scholar 

  • Ingmann, P., Wehr, T., and E.J.M.A. Group (2006), EarthCARE— A new mission providing global cloud and aerosol profiles, Proc. 2005 EUMETSAT Meteorological Satellite Conference. EUMETSAT Publication P. 46, S6–02. 426–431.

    Google Scholar 

  • Jiusto, J.E., Pilie, R.J., and Kocmond, W.C. (1968), Fog modification with giant hygroscopic nuclei, J. Appl. Meteor. 7, 860–869.

    Google Scholar 

  • Jiusto, J.E. Fog Structure. Clouds, their Formation, Optical Properties, End Effects (eds. P.V. Hobbs and A. Deepak) (Academic Press 1981), pp. 187–239.

    Google Scholar 

  • Karlsson, K.-G. (1989), Development of an operational cloud classification model, Internat. J. Remote Sensing 10, 687–693.

    Google Scholar 

  • Kessler, E. (1969), On the distribution and continuity of water substances in atmospheric circulations, Meteor. Monographs, Am. Meteor. Soc. 84 pp.

    Google Scholar 

  • Kidder, S.Q. and Wu, H.-T. (1984), Dramatic contrast between low clouds and snow cover in daytime 3.7 μm imagery, Monthly Weather Rev. 112, 2345–2346.

    Google Scholar 

  • Klein, S.A. and Hartmann, D.L. (1993), The seasonal cycle of low stratiform clouds, J. Climate 6, 1587–1606.

    Google Scholar 

  • Klein, W.H., Lewis, B.M., and Enger, I. (1959), Objective prediction of five-day mean temperatures during winter, J. Meteorol. 16, 672–682.

    Google Scholar 

  • Kloesel, K.A. (1992), A 70-year history of marine stratocumulus cloud field experiments off the coast of California. Bull. Am. Meteor. Soc. 73, 1581–1585.

    Google Scholar 

  • Knott, C.G., Collected Scientific Papers of John Aitken (Cambridge University Press 1923).

    Google Scholar 

  • Köppen, W. (1917), Landnebel und Seenebel, Part I, Annalen der Hydrographie und maritimen Meteorologie 44(5), 233–257.

    Google Scholar 

  • Köppen, W. (1917), Landnebel und Seenebel, Part II, Annalen der Hydrographie und maritimen Meteorologie 45(10), 401–405.

    Google Scholar 

  • Koracin, D., Lewis, J., Thompson, W.T., Dorman, C.E., and Businger, J.A. (2001), Transition of stratus into fog along the California Coast: Observations and modeling, J Atmos. Sci. 58, 1714–1731.

    Google Scholar 

  • Korb, G. and Zdunkowski, W. (1970), Distribution of radiative energy in ground fog, Tellus 22, 309–320.

    Google Scholar 

  • Kornfeld, B.A. and Silverman, B.A. (1970), A comparison of the warm fog clearing capabilities of some hygroscopic materials, J. App. Meteor. 9, 634–638.

    Google Scholar 

  • Koschmieder, H. (1924), Theorie der horizontalen Sichtweite, Beiträge zur Physik der freien Atmosphäre 12, 33–53 and 171–181.

    Google Scholar 

  • Kunkel, B.A. (1982), Microphysical Properties of Fog at Otis AFB, Environmental Research Paper 767, AFGL-TR-82-0026, Meteorology Division, Air Force Geophysics Laboratory, Hanscom AFB, Massachusetts.

    Google Scholar 

  • Kunkel, B.A. (1984), Parameterization of Droplet Terminal Velocity and Extinction Coefficient in Fog Models, J. Climate Appl. Meteor. 23, 34–41.

    Google Scholar 

  • LaDochy, S. (2005), The disappearance of dense fog in Los Angeles: Another urban impact?, Physical Geography 26, 177–191.

    Google Scholar 

  • Lala, G.G., Mandel, E., and Jiusto, J.E. (1975), A numerical investigation of radiation fog variables, J. Atmos. Sci. 32, 720–728.

    Google Scholar 

  • Lala, G.G., Jiusto, J.E., Meyer, M.B., and Komfein, M. (1982), Mechanisms of radiation fog formation on four consecutive nights, Preprints, Conf. on Cloud Physics, Nov. 15–18, 1982, Chicago, IL, AMS, Boston, MA, 9–11.

    Google Scholar 

  • Lee, T.E., Turk, F.J., and Richardson, K. (1997), Stratus and fog products using GOES-8-9 3.9-μm data, Weather and Forecasting, 12, 664–677.

    Google Scholar 

  • Leipper, D.F. (1994), Fog on the US West Coast: A review, Bull. Am. Meteor. Soc. 75, 229–240.

    Google Scholar 

  • Lewis, J., Koračin, D., Rabin, R., and Businger, J. (2003), Sea fog off the California Coast: Viewed in the context of transient weather systems, J. Geophys. Res. 108(D15), 4457, doi:10.1029/2002JD002833, 6-1 to 6–17.

    Google Scholar 

  • Lewis, J.M., Koračin, D., and Redmond, K.T. (2004), Sea fog research in the United Kingdom and United States: A historical essay including outlook, Bull. Am. Meteor. Soc., 85, 395–408.

    Google Scholar 

  • Leyton, S.M. and Fritsch, J.M. (2003), Short-term probabilistic forecasts of ceiling and visibility utilizing high-density surface weather observations, Weather and Forecasting 18, 891–202.

    Google Scholar 

  • Lindgren, S. and Neumann, J. (1980), Great historical events that were significantly affected by the weather: 5, Some meteorological events of the Crimean War and their consequences, Bull. Am. Meteor. Soc. 61, 1570–1583.

    Google Scholar 

  • Manobs (2006), Manual of surface weather observations, meteorological service of Canada, environment canada. Available online at http://www.mscsmc.ec.gc.ca/msb/manuals_e.cfm 369 pp.

  • Markus, M.J., Bailey, B.H., Stewart, R., and Samson, P.J. (1991), Low-level cloudiness in the Appalacian region, J. Appl. Meteor. 30, 1147–1162.

    Google Scholar 

  • Martin, D.E. (1972), Climatic presentations for short-range forecasting based on event occurrence and reoccurrence profiles, J. Appl. Meteor. 11, 1212–1223.

    Google Scholar 

  • Marzban, C., Leyton, S.M., and Colman, B. (2006), Ceiling and visibility forecasting via neural nets, Weather and Forecasting (accepted).

    Google Scholar 

  • Mason, J. (1982), The physics of radiation fog, J. Meteor. Soc. Japan 60, 486–498.

    Google Scholar 

  • Mensbrugghe, V. (1892), The formation of fog and of clouds, translated from Ciel et Terre, Symons’s Monthly Meteor. Magazine 27, 40–41.

    Google Scholar 

  • Meyer, M.B., Jiusto, J.E., and Lala, G.G. (1980), Measurement of visual range and radiation-fog (haze) microphysics, J. Atmos. Sci. 37, 622–629.

    Google Scholar 

  • Meyer, M.B. and Lala, G.G. (1986), FOG-82: A cooperative field study of radiation fog, Bull. Am. Meteor. Soc. 65, 825–832.

    Google Scholar 

  • Meyer, M.B. and Lala, G.G. (1990), Climatological aspects of radiation fog occurrence at Albany, New York, J. Climate 3, 577–586.

    Google Scholar 

  • Meyers, M.P., DeMott, P.J., and Cotton, W.R. (1992), New primary ice nucleation parameterizations in an explicit cloud model, J. Appl. Meteor. 31, 708–721.

    Google Scholar 

  • Michaelides, S.C., Tymvios, F.S., and Kalogirou, S., Artificial neural networks for meteorological variables pertained to energy and renewable energy applications [Chapter 2], In Artificial Intelligence in Energy and Renewable Energy Systems (ed. S. Kalogirou) (Nova Science Publishers, Inc. 2006).

    Google Scholar 

  • Minnis, P., Heck, P.W., Young, D.F., Fairall, C.W., and Snider, J.B. (1992), Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE, J. Appl. Meteor. 31, 317–339.

    Google Scholar 

  • Müller, M.D. (2006), Numerical simulation of fog and radiation in complex terrain, Ph.d. Thesis, University of Basel, Stratus 12. 103 pp.

    Google Scholar 

  • Müller, M.D., Schmutz, C., and Parlow, E. (2007), A one-dimensional ensemble forecast and assimilation system for fog prediction, Pure Appl. Geophys. 164, 7/8 this issue.

    Google Scholar 

  • Muraca, G., Maciver, D.C., Auld, H., and Urquizo, N. (2001), The climatology of fog in Canada, Proc. 2nd Internat. Conf. Fog and Fog Collection, St. John’s, Newfoundland, 15–20 July, 2001.

    Google Scholar 

  • Murtha, J. (1995), Applications of fuzzy logic in operational meteorology, Scientific Services and Professional Development Newsletter, Canadian Forces Weather Service, 42–54.

    Google Scholar 

  • Musson-Genon, L. (1987), Numerical simulations of a fog event with a one-dimensional boundary layer model, Monthly Weather Rev. 115, 592–607.

    Google Scholar 

  • Nakanishi, M. (2000), Large-eddy simulation of radiation fog, Boundary-Layer Meteorol. 94, 461–493.

    Google Scholar 

  • Nakanishi, M. and Niino, H. (2004), An improved Mellor-Yamada level-3 model with condensation physics: its design and verification, Boundary-Layer Meteorol. 112, 1–31.

    Google Scholar 

  • Nakanishi, M., and Niino, H. (2006), An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog, Boundary-Layer Meteorol. 119, 397–407.

    Google Scholar 

  • National Oceanic and Atomospheric Administration (1995), Surface weather observations and reports, Federal Meteorological Handbook No. 1, 94 pp. [Available from Department of Commerce, NOAA, Office of the Federal Coordinator for Meteorological Services and Supporting Research, 8455 Colesville Road, Suite 1500, Silver Spring, MD, 20910.

    Google Scholar 

  • Nauss, T., Čermak, J., Kokhanovsky, A., Reudenbach, C., and Bendix J. (2005a), Satellite based retrieval of cloud properties and their use in rainfall retrievals and fog detection, Photogrammetrie— Fernerkundung—Geoinformation 3, 209–218.

    Google Scholar 

  • Nauss, T., Kokhanovsky, A.A., Nakajima, T.Y., Reudenbach, C., and Bendix J. (2005b), The intercomparison of selected cloud retrieval algorithms, Atmos. Res. 78, 46–78.

    Google Scholar 

  • Neiburger, M. and Wurtele, M.G. (1949), On the nature and size of particles in haze, fog, and stratus of the Los Angeles region. Chemical Reviews, Baltimore, 44, 321–335.

    Google Scholar 

  • Neumann, J. (1989), Forecasts of fine weather in the literature of classical antiquity, Bull. Am. Meteor. Soc. 70, 46–48.

    Google Scholar 

  • Økland, H. and Gotaas, Y. (1995), Modelling and prediction of steam fog, Beitr. zur Phys. der Atmos. 68, 121–131.

    Google Scholar 

  • Oliver, D.A., Lewellen, W.S., and Williamson, G.G. (1978; 1977), The Interaction between Turbulent and Radiative Transport in the Development of Fog and Low-Level Stratus, J. Atmos. Sci. 35, 301–316.

    Google Scholar 

  • Peace, R.L. (1969), Heavy-fog regions in the conterminous united states, Monthly Weather Rev. 97, 116–123.

    Google Scholar 

  • Pagowski, M., Gultepe, I., and King, P. (2004), Analysis and modeling of an extremenly dense fog event in southern Ontario, J. Appl. Meteor. 43, 3–16.

    Google Scholar 

  • Pahor, S. and Gros, M. (1970), Optical properties of thick fog layers, Tellus 22, 321–326.

    CrossRef  Google Scholar 

  • Panofsky, H.A. and Brier, G.W. (1958), Some Applications of Statistics to Meteorology, (Pennsylvania State University, University Park, PA, 1958) 224 p.

    Google Scholar 

  • Pasini, A., Pelino, V., and Potesta, S. (2001), A neural network model for visibility nowcasting from surface observations: Results and sensitivity to physical input variables, J. Geophys. Res. 106, D14, 14951–14959.

    Google Scholar 

  • Peace, R.L. Jr. (1969), Heavy-fog regions in the conterminous United States, Monthly Weather Rev. 97, 116–123.

    Google Scholar 

  • Peak, J.E. and Tag, P.M. (1989), An expert system approach for prediction of maritime visibility obscuration, Monthly Weather Rev. 117, 2641–2653.

    Google Scholar 

  • Petterssen, S., Weather Analysis and Forecasting, Second Edition, Vol. 2, (McGraw-Hill Publ. Inc., New York 1956) 266p.

    Google Scholar 

  • Petterssen, S., Introduction to Meteorology, Third Edition, (McGraw-Hill Publ. Inc., New York 1969) 333p.

    Google Scholar 

  • Petty, K., Carmichael, B., Wiener, G., Petty, M., and Limber, M. (2000), A fuzzy logic system for the analysis and prediction of cloud ceiling and visibility, Preprints Ninth Conference on Aviation, Range, and Aerospace Meteorology, Orlando, Fl., Am. Meteor. Soc. 331–333.

    Google Scholar 

  • Philipps, D. (1990), The Climates of Canada (available from Environment Canada, Downsview, Ontario).

    Google Scholar 

  • Pilié, R.J., Mack, E.J., Kocmond, W.C., Rogers, C.W., and Eadie, W.J. (1975), The life cycle of valley fog. Part I: Micrometeorological characteristics, J. Appl. Meteor. 14, 347–363.

    Google Scholar 

  • Pilié, R.J., Mack, E.J., Rogers, C.W., Katz, U., and Kocmond, W.C. (1979), The formation of marine fog and the development of fog-stratus systems along the California Coast, J. Appl. Meteor. 18, 1275–1286.

    Google Scholar 

  • Pinnick, R.G., Hoihjelle, D.L., Fernandez, G., Stenmark, E.B., Lindberg, J.D., and Hoidale, G.B. (1978), Vertical structure in atmospheric fog and haze and its effects on visible and infrared extinction, J. Atmos. Sci. 35, 2020–2032.

    Google Scholar 

  • Plank, V.G., Spatola, A.A., and Hicks, J.R. (1971), Summary results of the lewisburg fog clearning program, J. Appl. Meteor. 10, 763–779.

    Google Scholar 

  • Pliny , Natural History, Books XVII–XIX. English translation by H. Rackham (Harvard University Press 1971).

    Google Scholar 

  • Pruppacher, H.R. and Klett, J.D., Microphysics of Clouds and Precipitation, 2nd edition, (Kluwer Pub. Inc., Boston 1997) 954 p.

    Google Scholar 

  • Putsay, M., Kerényi, J., Szenyán, I., Sebok, I., Németh, P., and Diószeghy, M. (2001), Nighttime fog and low cloud detection in NOAA-16 AVHRR images and validation with ground observed SYNOP data and radar measurements, Proceedings of the 2001 EUMETSAT Meteorological Satellite Conference, EUM P33, 365–373, EUMETSAT, Antalya, Turkey.

    Google Scholar 

  • Räisänen, P, Isaac, G.A., Barker, H.W., and Gultepe, I. (2003), Impact of horizontal variations in effective radius on solar radiative properties of stratiform water clouds, Quart. J. Roy. Meteor. Soc. 129, 2135–2149.

    Google Scholar 

  • Reudenbach, C. and Bendix, J. (1998), Experiments with a straightforward model for the spatial forecast of fog/low stratus clearance based on multi-source data, Meteor. Applications 5, 205–216.

    Google Scholar 

  • Roach, W.T. (1995a), Back to basics: Fog: Part 2—The formation and dissipation of land fog, Weather 50, 7–11.

    Google Scholar 

  • Roach, W.T. (1995b), Back to basics: Fog: Part 3—The formation and dissipation of sea fog, Weather 50, 80–84.

    Google Scholar 

  • Roach, W.T. (1976), On the effect of radiative exchange on the growth by condensation of a cloud or fog droplet, Quart. J. Roy. Meteor. Soc. 102, 361–372.

    Google Scholar 

  • Roach, W.T., Brown, R. Caughey, R., Garland S.J., and Readings, C.J. (1976), The physics of radiation fog: I—A field study, Quart. J. Roy. Meteor. Soc. 102, 313–333.

    Google Scholar 

  • Robasky, F.M. and Wilson, F.W. (2006), Statistical forecasting of ceiling for New York City airspace based on routine surface observations, 12th Conference on Aviation, Range, and Aerospace Meteorology, Atlanta, GA, Am. Meteor. Soc. Atlanta, GA, 30 Jan.–2 Feb., 2006.

    Google Scholar 

  • Ryznar, E. (1977), Advection-radiation fog near Lake Michigan, Atmos. Environ, 11, 427–430.

    Google Scholar 

  • Saunders, W.E. (1950), A method of forecasting the temperature of fog formation, Meteor. Mag. 79, 213–219.

    Google Scholar 

  • Saunders, P.M. (1964), Sea smoke and steam fog, Quart. J. Roy. Meteor. Soc. 90, 156–165.

    Google Scholar 

  • Saunders, R.W. and Gray, D.E. (1985), Interesting cloud features seen by NOAA-6 3.7 micrometer images, Meteor. Mag. 114, 211–114.

    Google Scholar 

  • Schemenauer, R.S. and Cereceda, P. (1994), A proposed standard fog collector for use in high-elevation regions, J. Appl. Meteor. 33, 1313–1322.

    Google Scholar 

  • Scott, R.H. (1894), Fogs reported with strong winds during the 15 years 1876–90 in the British Isles, Quart. J. Roy. Meteor. Soc. XX, 253–262.

    Google Scholar 

  • Scott, R.H. (1896), Notes on some of the difference between fogs, as related to the weather systems which accompany them, submitted to the Fog Committee, Quart. J. Roy. Meteor. Soc. XXII, 41–65.

    Google Scholar 

  • Siebert, J., Sievers, U. and Zdunkowski, W. (1992), A one dimensional simulation of the interaction between land surface processes and the atmosphere, Boundary-Layer Meteorol 59, 1–34.

    Google Scholar 

  • Siebert, J., Bott, A., and Zdunkowski, W. (1992a), Influence of a vegetation-soil model on the simulation of radiation fog, Beitr. Phys. Atmos. 65, 93–106.

    Google Scholar 

  • Siebert, J., Bott, A., and Zdunkowski, W. (1992b), A one-dimensional simulation of the interaction between land surface processes and the atmosphere, Boundary-Layer Meteorol. 59, 1–34.

    Google Scholar 

  • Stalenhoef, A.H.C. (1974), Slant visibility during fog related wind speed, air temperature and stability, Archiv für Meteorologie, Bioklimatologie und Geophysik, Serie B 22, 351–361.

    Google Scholar 

  • Stephens, G.L., Vane, D.G., Boain, R.J., Mace, G.G., Sassen, K., Wang, Z., Illingworth, A.J., O’Connor, E.J., Rossow, W.B., Durden, S.L., Miller, S.D., Austin, R.T., Benedetti, A., Mitrescu, C., and Team, T.C.S. (2002), The Cloudsat mission and the A-Train—A new dimension of space-based observations of clouds and precipitation, Bull. Am. Meteor. Soc. 83, 1771–1790.

    Google Scholar 

  • Stewart, R.E. (1992), Precipitation types in the transition region of winter storms, Bull. Am. Meteor. Soc. 73, 287–296.

    Google Scholar 

  • Stewart, R.E., Yiu, D.T., Chung, K.K., Hudak, D.R., Lozowski, E.P., Oleskiw, M., Sheppard, B.E., and Szeto, K.K. (1995), Weather conditions associated with the passage of precipitation type transition regions over Eastern Newfoundland, Atmos.-Ocean 33 25–53.

    Google Scholar 

  • Steward D.S. and Essenwanger, O.M. (1982), A survey of fog and related optical propagation characteristics, Rev. Geophys. Space Phys., 20, 481–495.

    Google Scholar 

  • Stratton, J.A. and Houghton, H.G. (1931), A theoretical investigation of the transmission of light through fog, Physical Rev. 38, 159–165.

    Google Scholar 

  • Sujitjorn, S., Sookjaras, P., and Wainikorn, W. (1994), An expert system to forecast visibility in Don-Muang Air Force Base, 1994 IEEE Internat. Conf. on Systems, Man and Cybernetics (Humans, Information and Technology) (2–5 Oct., 1994), IEEE, NY, NY, USA, 2528–2531.

    Google Scholar 

  • Tag, P.M. and Peak, J.E. (1996), Machine learning of maritime fog forecast rules, J. Appl. Meteor. 35, 714–724.

    Google Scholar 

  • Tardif, R. (2007), The impact of vertical resolution in the explicit numerical forecasting of radiation fog: A case study. Pure Appl. Geophys. 164, 7/8, this issue.

    Google Scholar 

  • Tardif, R. and Rasmussen, R.M. (2007), Event-based climatology and typology of fog in the New York City region, J. Appl. Meteor., in press.

    Google Scholar 

  • Taylor, G.I. (1917), The formation of fog and mist, Quart. J. Roy. Meteor Soc. 43, 241–268.

    CrossRef  Google Scholar 

  • Teixeira, J. (1999), Simulation of fog with the ECMWF prognostic cloud scheme, Quart. J. Roy. Meteor. Soc. 125, 529–553.

    Google Scholar 

  • Teixeira, J. and Miranda, P.M.A. (2001), Fog prediction at Lisbon airport using a one-dimensional boundary layer model, Meteor. Applications 8, 497–505.

    Google Scholar 

  • Telford, J.W. and Chai, S.K. (1993), Marine fog and its dissipation over warm water, J. Atmos. Sci. 50, 3336–3349.

    Google Scholar 

  • Terra, R., Mechoso, C.H., and Arakawa, A. (2004), Impact of orographically induced spatial variability in PBL stratiform clouds on climate simulations, J. Climate 17, 276–293.

    Google Scholar 

  • Thuman, W.C. and Robinson, E. (1954), Studies of Alaskan ice-fog particles, J. Atmos. Sci. 11, 151–156.

    Google Scholar 

  • Tjernstrom, M. (2003), Simulated liquid water and visibility in stratiform boundary-layer clouds over sloping terrain, J. Appl. Meteor. 32, 656–665.

    Google Scholar 

  • Tomasi, C. and Tampieri, F. (1976), Features of the proportionality coefficient in the relationship between visibility and liquid water content in haze and fog, Atmosphere 14, 61–76.

    Google Scholar 

  • Turner, J., Allam, R., and Maine, D. (1986), A case study of the detection of fog at night using channels 3 and 4 on the Advanced Very High Resolution Radiometer (AVHRR), Meteor. Mag. 115, 285–290.

    Google Scholar 

  • Turton, J.D. and Brown, R. (1987), A comparison of a numerical model of radiation fog with detailed observations, Quart. J. Roy. Meteor. Soc. 113, 37–54.

    Google Scholar 

  • Underwood, S.J., Ellrod, G.P., and Kuhnert, A.L. (2004), A multiple-case analysis of nocturnal radiation-fog development in the central valley of California utilizing the GOES nighttime fog product, J. Appl. Meteor. 43, 297–311.

    Google Scholar 

  • Vislocky, R.L. and Fritsch, J.M. (1995), Improved model output statistics forecasts through model consensus, Bull. Am. Meteor. Soc. 76, 1157–1164.

    Google Scholar 

  • Vislocky, R.L. and Fritsch, J.M. (1997), An automated, observations-based system for short-term prediction of ceiling and visibility, Weather and Forecasting 12, 31–43.

    Google Scholar 

  • Von Glasow, R. and Bott, A. (1999), Interaction of radiation fog with tall vegetation, Atmos. Environ. 33, 1333–1346.

    Google Scholar 

  • Wantuch, F. (2001), Visibility and fog forecasting based on decision tree method, IDOJARAS 105, 29–38.

    Google Scholar 

  • Weickmann, H.K. (1979), Tor Harold Percival Bergeron, Bull. Am. Meteor. Soc., 60, 406–414.

    Google Scholar 

  • Weinstein, A.I. and Silverman, B.A. (1973), A numerical analysis of some practical aspects of airborne urea seeding for warm fog dispersal at airports, J. Appl. Meteor. 12, 771–780.

    Google Scholar 

  • Welch, R.M. and Wielicki, B.A. (1986), The stratocumulus nature of fog, J. Appl. Meteor. 25, 101–111.

    Google Scholar 

  • Wendisch, M., Mertes, S., Heintzenberg, J. Wiedensohler, A., Schell, D., Wobrock, W., Frank, G., Martinsson, B.G., Fuzzi, S., Orsi, G., Kos, G., and Berner, A. (1998), Drop size distribution and LWC in Po Valley Fog, Contr. Atmos. Phys. 71, 87–100.

    Google Scholar 

  • Wilks, D.S., Statistical Methods in the Atmospheric Sciences (Academic Press, 1995).

    Google Scholar 

  • Willett, H.C. (1928), Fog and haze, their causes, distribution, and forecasting, Monthly Weather Rev. 56, 435–468.

    Google Scholar 

  • Witiw, M.R. and Baars, J.A. (2003), Long term climatological changes in fog intensity and coverage. Proc. 14th Symp. Global Change and Climate Variations, Am. Meteor. Soc., Long Beach, CA.

    Google Scholar 

  • WMO (1966), International Meteorological Vocabulary (World Meteorological Organization. Geneva Switzerland).

    Google Scholar 

  • WMO (1991), Lectures presented at the WMO training workshop on the interpretation of NWP products in terms of local weather phenomena and their verification. Preprints, Program on Short-and Medium-Range Weather Prediction Research, (World Meteorological Organization. Geneva Switzerland).

    Google Scholar 

  • Wright, B.J. and Thomas, N. (1998), An objective visibility analysis and very-short-range forecasting system, Meteor. Applications 5, 157–181.

    Google Scholar 

  • Yuskiewicz, B., Orsini, D., Stratmann, F., Wendisch, M., Wiedensohler, A., Hejntzenberg, J., Martinsson, B.G., Frank, G., Wobrock, W., and Scell, D. (1998), Changes in submicrometer particle distributions and light scattering during haze and fog events in a highly polluted environment, Contr. Atmos. Phys. 71, 33–45.

    Google Scholar 

  • Zdunkowski, W. and Nielsen, B. (1969), A preliminary prediction analysis of radiation fog, Pure Appl. Geophys. 19, 45–66.

    Google Scholar 

  • Zdunkowski, W. and Barr, A. (1972), A radiative-conductive model for the prediction of radiation fog, Bound-Layer Meteor. 3, 152–157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Birkhäuser Verlag

About this paper

Cite this paper

Gultepe, I. et al. (2007). Fog Research: A Review of Past Achievements and Future Perspectives. In: Gultepe, I. (eds) Fog and Boundary Layer Clouds: Fog Visibility and Forecasting. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8419-7_3

Download citation

Publish with us

Policies and ethics