Skip to main content

Climatological Tools for Low Visibility Forecasting

Part of the Pageoph Topical Volumes book series (PTV)

Abstract

Forecasters need climatological forecasting tools because of limitations of numerical weather prediction models. In this article, using Finnish SYNOP observations and ERA-40 model reanalysis data, low visibility cases are studied using subjective and objective analysis techniques. For the objective analysis, we used an AutoClass clustering algorithm, concentrating on three Finnish airports, namely, the Rovaniemi in northern Finland, Kauhava in western Finland, and Maarianhamina in southwest Finland. These airports represent different climatological conditions. Results suggested that combining of subjective analysis with an objective analysis, e.g., clustering algorithms such as the AutoClass method, can be used to construct climatological guides for forecasters. Some higher level subjective “meta-clustering” was used to make the results physically more reasonable and easier to interpret by the forecasters.

Key words

  • Low visibility
  • fog
  • clustering
  • forecast model reanalysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhattacharya, A. (1943), On a measure of divergence between two statistical populations defined by their probability distributions, Bull. Calcutta Math. Soc. 35, 99–110.

    Google Scholar 

  • Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., and Freeman, D. (1988), AutoClass: A Bayesian Classification System. In Proc. Fifth Internat. Conf. on Machine Learing, Ann Arbor, MI. June 12–14 1988. Morgan Kaufmann Publishers, San Francisco, pp. 54–64.

    Google Scholar 

  • Cheng, C.S., Auld, H., Li, G., Klaassen, J., Tugwood, B., and Li, Q. (2004), An automated synoptic typing procedure to predict freezing rain: An application to Ottawa, Ontario, Canada, Weather and Forecasting 194, 751–768.

    CrossRef  Google Scholar 

  • Gutiérrez, J.M., Cofiño, A.S., and Cano, R. (2004), Clustering methods for statistical downscaling in short-range weather forecasts, Mon. Wea. Rev. 132,9, 2169–2183.

    CrossRef  Google Scholar 

  • R. Development Core Team (2005), R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

    Google Scholar 

  • Ripley, B.D. Pattern Recognition and Neural Networks (Cambridge University Press, Cambridge 1996).

    Google Scholar 

  • Tardif, R. (2004), Characterizing fog occurrences in the Northeastern United States using historical data, 11th Conf. Aviation, Range and Aerospace Meteorology, Hyannis Port.

    Google Scholar 

  • Uppala, S.M., KÅllberg, P.W., Simmons, A.J., Andrae, U., da Costa Bechtold, V., Fiorino, M., Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R.P., Andersson, E., Arpe, K., Balmaseda, M.A., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., McNally, A.P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N.A., Saunders, R.W., Simon, P., Sterl, A., Trenberth, K.E., Untch, A., Vasiljevic, D., Viterro, P., and Woollen, J. (2005), The ERA-40 re-analysis., Quart. J. Roy. Meteorol. Soc., 131, 2961–3012.

    CrossRef  Google Scholar 

  • Wilks, D.S., Statistical Methods in the Atmospheric Sciences: an Introduction (Academic Press, San Diego, 1995).

    Google Scholar 

  • World Meteorological Organization (1995), WMO-No 306, Manual on Codes, International Codes, Volume I.1, Geneva.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Birkhäuser Verlag

About this paper

Cite this paper

Hyvärinen, O., Julkunen, J., Nietosvaara, V. (2007). Climatological Tools for Low Visibility Forecasting. In: Gultepe, I. (eds) Fog and Boundary Layer Clouds: Fog Visibility and Forecasting. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8419-7_16

Download citation

Publish with us

Policies and ethics