Abstract
Forecasters need climatological forecasting tools because of limitations of numerical weather prediction models. In this article, using Finnish SYNOP observations and ERA-40 model reanalysis data, low visibility cases are studied using subjective and objective analysis techniques. For the objective analysis, we used an AutoClass clustering algorithm, concentrating on three Finnish airports, namely, the Rovaniemi in northern Finland, Kauhava in western Finland, and Maarianhamina in southwest Finland. These airports represent different climatological conditions. Results suggested that combining of subjective analysis with an objective analysis, e.g., clustering algorithms such as the AutoClass method, can be used to construct climatological guides for forecasters. Some higher level subjective “meta-clustering” was used to make the results physically more reasonable and easier to interpret by the forecasters.
Key words
- Low visibility
- fog
- clustering
- forecast model reanalysis
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Bhattacharya, A. (1943), On a measure of divergence between two statistical populations defined by their probability distributions, Bull. Calcutta Math. Soc. 35, 99–110.
Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., and Freeman, D. (1988), AutoClass: A Bayesian Classification System. In Proc. Fifth Internat. Conf. on Machine Learing, Ann Arbor, MI. June 12–14 1988. Morgan Kaufmann Publishers, San Francisco, pp. 54–64.
Cheng, C.S., Auld, H., Li, G., Klaassen, J., Tugwood, B., and Li, Q. (2004), An automated synoptic typing procedure to predict freezing rain: An application to Ottawa, Ontario, Canada, Weather and Forecasting 194, 751–768.
Gutiérrez, J.M., Cofiño, A.S., and Cano, R. (2004), Clustering methods for statistical downscaling in short-range weather forecasts, Mon. Wea. Rev. 132,9, 2169–2183.
R. Development Core Team (2005), R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
Ripley, B.D. Pattern Recognition and Neural Networks (Cambridge University Press, Cambridge 1996).
Tardif, R. (2004), Characterizing fog occurrences in the Northeastern United States using historical data, 11th Conf. Aviation, Range and Aerospace Meteorology, Hyannis Port.
Uppala, S.M., KÅllberg, P.W., Simmons, A.J., Andrae, U., da Costa Bechtold, V., Fiorino, M., Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R.P., Andersson, E., Arpe, K., Balmaseda, M.A., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., McNally, A.P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N.A., Saunders, R.W., Simon, P., Sterl, A., Trenberth, K.E., Untch, A., Vasiljevic, D., Viterro, P., and Woollen, J. (2005), The ERA-40 re-analysis., Quart. J. Roy. Meteorol. Soc., 131, 2961–3012.
Wilks, D.S., Statistical Methods in the Atmospheric Sciences: an Introduction (Academic Press, San Diego, 1995).
World Meteorological Organization (1995), WMO-No 306, Manual on Codes, International Codes, Volume I.1, Geneva.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Birkhäuser Verlag
About this paper
Cite this paper
Hyvärinen, O., Julkunen, J., Nietosvaara, V. (2007). Climatological Tools for Low Visibility Forecasting. In: Gultepe, I. (eds) Fog and Boundary Layer Clouds: Fog Visibility and Forecasting. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8419-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-7643-8419-7_16
Received:
Accepted:
Published:
Publisher Name: Birkhäuser Basel
Print ISBN: 978-3-7643-8418-0
Online ISBN: 978-3-7643-8419-7
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)
