Skip to main content

M TSU : Recovering Seismic Moments from Tsunameter Records

  • Conference paper
Tsunami and Its Hazards in the Indian and Pacific Oceans

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 1086 Accesses

Abstract

We define a new magnitude scale, M TSU, allowing the quantification of the seismic moment M0 of an earthquake based on recordings of its tsunami in the far field by ocean-bottom pressure sensors (“tsunameters”) deployed in ocean basins, far from continental or island shores which are known to affect profoundly and in a nonlinear fashion the amplitude of the tsunami wave. The formula for M TSU, M TSU=log10 M O‒20=log10 X (ω) + C TSU D + C TSU S +C O, where X(ω) is the spectral amplitude of the tsunami, C TSUD a distance correction and C TSUS a source correction, is directly adapted from the mantle magnitude M m introduced for seismic surface waves by Okal and Talandier. Like M m, its corrections are fully justified theoretically based on the representation of a tsunami wave as a branch of the Earth's normal modes. Even the locking constant C 0, which may depend on the nature of the recording (surface amplitude of the tsunami or overpressure at the ocean floor) and its units, is predicted theoretically. M TSU combines the power of a theoretically developed algorithm, with the robustness of a magnitude measurement that does not take into account such parameters as focal geometry and exact depth, which may not be available under operational conditions in the framework of tsunami warning. We verify the performance of the concept on simulations of the great 1946 Aleutian tsunami at two virtual gauges, and then apply the algorithm to 24 records of 7 tsunamis at DART tsunameters during the years 1994–2003. We find that M TSU generally recovers the seismic moment M 0 within 0.2 logarithmic units, even under unfavorable conditions such as excessive focal depth and refraction of the tsunami wave around continental masses. Finally, we apply the algorithm to the JASON satellite trace obtained over the Bay of Bengal during the 2004 Sumatra tsunami, after transforming the trace into a time series through a simple ad hoc procedure. Results are surprisingly good, with most estimates of the moment being over 1029 dyn-cm, and thus identifying the source as an exceptionally large earthquake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, K. (1981), A new scale of tsunami magnitude, M t, Phys. Earth Planet. Inter. 27, 194–205.

    Article  Google Scholar 

  • Alterman, Z., Jarosch, H., and Pekeris, C.L. (1959), Oscillations of the Earth, Proc. Roy. Soc. Ser. A, 252, 80–95.

    Article  Google Scholar 

  • Artru, J., Dučić, V., Kanamori, H., Lognonné, P., and Murakami, M. (2005), Ionospheric detection of gravity waves induced by tsunamis, Geophys. J. Intl. 160, 840–848.

    Article  Google Scholar 

  • Ben-Menahem, A., and Rosenman, M. (1972), Amplitude patterns of tsunami waves from submarine earthquakes, J. Geophys. Res. 77, 3097–3128.

    Google Scholar 

  • Geller, R.J. (1976), Scaling relations for earthquake source parameters and magnitudes, Bull. Seismol. Soc. Amer. 66, 1501–1523.

    Google Scholar 

  • Gilbert, F. (1970), Excitation of the normal modes of the Earth by earthquake sources, Geophys. J. Roy. astr. Soc. 22, 223–226.

    Google Scholar 

  • González, F.I., Bernard, E.N., Meinig, C., Eble, M.C., Mofjeld, H.O., and Stalin, S. (2005), The NTHMP Tsunameter network, Natural Hazards 35, 25–39.

    Article  Google Scholar 

  • Guibourg, S., Heinrich, P., and Roche, R. (1997), Numerical modeling of the 1995 Chilean tsunami; impact on French Polynesia, Geophys. Res. Letts. 24, 775–778.

    Article  Google Scholar 

  • Hanson, J.A. and Bowman, J.R. (2005), Dispersive and reflected tsunami signals from the 2004 Indian Ocean tsunami observed on hydrophones and seismic stations, Geophys. Res. Letts. 32(17), L17608, 5 pp.

    Article  Google Scholar 

  • Kanamori, H. (1977), The energy release in great earthquakes, J. Geophys. Res. 82, 2981–2987.

    Article  Google Scholar 

  • Kanamori, H. and Cipar, J.J. (1974), Focal process of the great Chilean earthquake, May 22, 1960, Phys. Earth Planet. Inter. 9, 128–136.

    Article  Google Scholar 

  • López, A.M. and Okal, E.A. (2006), A seismological reassessment of the source of the 1946 Aleutian “tsunami” earthquake, Geophys. J. Intl. 165, 835–849.

    Article  Google Scholar 

  • Love, A.E.H., Some Problems in Geodynamics (Cambridge Univ. Press, 1911).

    Google Scholar 

  • Mansinha, L. and Smylie, D.E. (1971), The displacement fields of inclined faults, Bull. Seismol. Soc. Amer. 61, 1433–1440.

    Google Scholar 

  • Occhipinti, G., Lognonné, P., Kherani, A., and Hébert, H. (2005), Modeling and detection of ionospheric perturbation associated with the Sumatra tsunami of December 26th, 2004, Eos, Trans. Amer. Geophys. Un. 86(52), U11A–0829 (abstract).

    Google Scholar 

  • Okal, E.A. (1982), Mode-wave equivalence and other asymptotic problems in tsunami theory, Phys. Earth Planet. Inter. 30, 1–11.

    Article  Google Scholar 

  • Okal, E.A. (1988), Seismic parameters controlling far-field tsunami amplitudes: A review, Natural Hazards 1, 67–96.

    Article  Google Scholar 

  • Okal, E.A. (1990), Single forces and double-couples: A theoretical review of their relative efficiency for the excitation of seismic and tsunami waves, J. Phys. Earth 38, 445–474.

    Google Scholar 

  • Okal, E.A. (2003), Normal mode energetics for far-field tsunamis generated by dislocations and landslides, Pure Appl. Geophys. 160, 2189–2221.

    Article  Google Scholar 

  • Okal, E.A. and Hébert, H. (2007), Far-field modeling of the 1946 Aleutian tsunami, Geophys. J. Intl. in press.

    Google Scholar 

  • Okal, E.A. and Talandier, J. (1989), M m: Avariable period mantle magnitude, J. Geophys. Res. 94, 4169–4193.

    Google Scholar 

  • Okal, E.A. and Talandier, J. (1991), Single-station estimates of the seismic moment of the 1960 Chilean and 1964 Alaskan earthquakes, using the mantle magnitude M m, Pure Appl. Geophys. 136, 103–126.

    Article  Google Scholar 

  • Okal, E.A., Piatanesi, A., and Heinrich, P. (1999), Tsunami detection by satellite altimetry, J. Geophys. Res. 104, 599–615.

    Article  Google Scholar 

  • Okal, E.A., Synolakis, C.E., Fryer, G.J., Heinrich, P., Borrero, J.C., Ruscher, C., Arcas, D., Guille, G., and Rousseau, D. (2002), A field survey of the 1946 Aleutian tsunami in the far field, Seismol. Res. Letts. 73, 490–503.

    Google Scholar 

  • Okal, E.A., Talandier, J., and Reymond, D. (2007), Quantification of hydrophone records of the 2004 Sumatra tsunami, Pure Appl. Geophys. 164, 309–323.

    Article  Google Scholar 

  • Peltier, W.P. and Hines, C.O. (1976), On a possible ionospheric technique for tsunami detection, Geophys. J. Roy. astr. Soc. 46, 669–706.

    Google Scholar 

  • Saito, M. (1967), Excitation of free oscillations and surface waves by a point source in a vertically heterogeneous Earth, J. Geophys. Res. 72, 3689–3699.

    Google Scholar 

  • Scharroo, R., Smith, W.H.F., Titov, V.V., and ARCAS, D. (2005), Observing the Indian Ocean tsunami with satellite altimetry, Geophys. Res. Abstr. 7, 230, (abstract).

    Google Scholar 

  • Sladen, A. and Hébert, H., Inversion of satellite altimetry to recover the Sumatra 2004 earthquake slip distribution, Eos, Trans. Amer. Geophys. Un. 86(52), U22A–07, (2005) (abstract).

    Google Scholar 

  • Stein, S. and Okal, E.A. (2005), Size and speed of the Sumatra earthquake, Nature 434, 581–582.

    Article  Google Scholar 

  • Synolakis, C.E., Tsunami and seiche, In Earthquake Engineering Handbook (eds.) W.-F. Chen and C. Scawthron pp. 9_1–9_90, (CRC Press, Boca Raton, 2002).

    Google Scholar 

  • Tanioka, Y., Ruff, L.J., and Satake, K. (1995), The great Kurile earthquake of October 4, 1994 tore the slab, Geophys. Res. Letts. 22, 1661–1664.

    Article  Google Scholar 

  • Titov, V.V. and Arcas, D. (2005), Indian Ocean tsunami generation and propagation from modeling and observations, Geol. Soc. Amer. Abstr. with Programs 37(7), p.93, (abstract).

    Google Scholar 

  • Titov, V.V. and Synolakis, C.E. (1998), Numerical modeling of tidal wave run-up, J. Waterw. Port, Coastal and Ocean Eng. 124, 157–171.

    Article  Google Scholar 

  • Titov, V.V., González, F.I., Bernard, E.N., Eble, M.C., Mofjeld, H.O., Newman, J.C., and Venturato, A.J. (2005), Real-time tsunami forecasting: Challenges and solutions, Natural Hazards 35, 41–58.

    Article  Google Scholar 

  • Tsai, V.C., Nettles, M., Ekström, G., and Dziewoński, A.M. (2005), Multiple CMT source analysis of the 2004 Sumatra earthquake, Geophys. Res. Letts. 32(17), L17304, 4 pp.

    Article  Google Scholar 

  • Ward, S.N. (1980), Relationships of tsunami generation and an earthquake source, J. Phys. Earth 28, 441–474.

    Google Scholar 

  • Ward, S.N. (1981), On tsunami nucleation: I. A point source, J. Geophys. Res. 86, 7895–7900.

    Google Scholar 

  • Ward, S.N. (1982a), On tsunami nucleation: II. An instantaneous modulated line source, Phys. Earth Planet. Inter. 27, 273–285.

    Article  Google Scholar 

  • Ward, S.N. (1982b), Earthquake mechanism and tsunami generation: the Kurile Islands event of October 13, 1963, Bull. Seismol. Soc. Amer. 72, 759–777.

    Google Scholar 

  • Weaver, P.F., Yuen, P.C., Prölss, G.W., and Furumoto, A.S. (1970), Acoustic coupling into the ionosphere from seismic waves of the earthquake at Kurile Islands on August 11, 1969, Nature 226, 1239–1241.

    Article  Google Scholar 

  • Yeh, H., Titov, V.V., Gusiakov, V., Pelinovsky, E., Khramushin, V., and Kaistrenko, V. (1995), The 1994 Shikotan earthquake tsunamis, Pure Appl. Geophys. 144, 855–874.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhaüser Verlag, Basel

About this paper

Cite this paper

Okal, E.A., Titov, V.V. (2007). M TSU : Recovering Seismic Moments from Tsunameter Records. In: Satake, K., Okal, E.A., Borrero, J.C. (eds) Tsunami and Its Hazards in the Indian and Pacific Oceans. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8364-0_5

Download citation

Publish with us

Policies and ethics