Skip to main content

Myocardial Proteases and Matrix Remodeling in Acute Myocarditis and Inflammatory Cardiomyopathy

  • Chapter
Inflammatory Cardiomyopathy (DCMi)

Abstract

Inflammatory cardiomyopathy (DCMi) is commonly induced and maintained by cardiotropic viruses, and is associated with left ventricular (LV) dysfunction accompanied by myocardial inflammatory cell infiltration and increased release of proinflammatory cytokines. Recent insights have revealed the pivotal role played by the disruption of the extracellular matrix (ECM) architecture, caused mainly by cytokine-driven post-translational modification. Fibrillar collagen turnover results from the equilibrium between synthesis and degradation. The imbalance of the matrix degrading system with induced expression of metalloproteinases (MMPs) and plasminogen activators, and with concomitantly reduced expression of the tissue inhibitors of MMPs, contributes to a pathological collagen turnover. This results in a loss of myocardial structural integrity and impairment of LV function. Interference with ECM regulatory mechanisms may be effective in preventing persistent virus-induced and cytokine-driven cardiac injury. Future investigations are warranted to elucidate the possible effects of established immunomodulatory treatment strategies on the expression, biological activity and architecture of ECM components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pauschinger M, Bowles NE, Fuentes-Garcia FJ, Pham V, Kühl U, Schwimmbeck PL, Schultheiss HP, Towbin JA (1999) Detection of adenoviral genome in the myocardium of adult patients with idiopathic left ventricular dysfunction. Circulation 99: 1348–54

    CAS  PubMed  Google Scholar 

  2. Pauschinger M, Doerner A, Kühl U, Schwimmbeck PL, Poller W, Kandolf R, Schultheiss HP (1999) Enteroviral RNA replication in the myocardium of patients with left ventricular dysfunction and clinically suspected myocarditis. Circulation 99: 889–95

    CAS  PubMed  Google Scholar 

  3. Pauschinger M, Chandrasekharan K, Noutsias M, Kühl U, Schwimmbeck LP, Schultheiss HP (2004) Viral heart disease: Molecular diagnosis, clinical prognosis, and treatment strategies. Med Microbiol Immunol (Berl) 193: 65–9

    CAS  Google Scholar 

  4. Li J, Schwimmbeck PL, Tschöpe C, Leschka S, Husmann L, Rutschow S, Reichenbach F, Noutsias M, Kobalz U, Poller W et al (2002) Collagen degradation in a murine myocarditis model: Relevance of matrix metalloproteinase in association with inflammatory induction. Cardiovasc Res 56: 235–47

    CAS  PubMed  Google Scholar 

  5. Noutsias M, Seeberg B, Schultheiss HP, Kühl U (1999) Expression of cell adhesion molecules in dilated cardiomyopathy: Evidence for endothelial activation in inflammatory cardiomyopathy. Circulation 99: 2124–31

    CAS  PubMed  Google Scholar 

  6. Kühl U, Pauschinger M, Bock T, Klingel K, Schwimmbeck CP, Seeberg B, Krautwurm L, Noutsias M, Poller W, Schultheiss HP et al (2003) Parvovirus B19 infection mimicking acute myocardial infarction. Circulation 108: 945–50

    PubMed  Google Scholar 

  7. Kühl U, Pauschinger M, Noutsias M, Seeberg B, Bock T, Lassner D, Poller W, Kandolf R, Schultheiss HP (2005) High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. Circulation 111: 887–93

    PubMed  Google Scholar 

  8. Kühl U, Pauschinger M, Seeberg B, Lassner D, Noutsias M, Poller W, Schultheiss HP (2005) Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation 112: 1965–70

    PubMed  Google Scholar 

  9. Noutsias M, Rohde M, Block A, Klippert K, Lettau O, Blunert K, Hummel M, Kühl U, Lehmkuhl H, Hetzer R et al (2008) Preamplification techniques for real-time RT-PCR analyses of endomyocardial biopsies. BMC Mol Biol 9: 3

    PubMed  Google Scholar 

  10. Kindermann I, Kindermann M, Kandolf R, Klingel K, Bultmann B, Muller T, Lindinger A, Bohm M (2008) Predictors of outcome in patients with suspected myocarditis. Circulation 118: 639–48

    PubMed  Google Scholar 

  11. Caforio AL, Calabrese F, Angelini A, Tona F, Vinci A, Bottaro S, Ramondo A, Carturan E, Iliceto S, Thiene G et al (2007) A prospective study of biopsy-proven myocarditis: Prognostic relevance of clinical and aetiopathogenetic features at diagnosis. Eur Heart J 28: 1326–33

    PubMed  Google Scholar 

  12. Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ 3rd, Spinale FG (1998) Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 97: 1708–15

    CAS  PubMed  Google Scholar 

  13. Pauschinger M, Knopf D, Petschauer S, Doerner A, Poller W, Schwimmbeck PL, Kühl U, Schultheiss HP (1999) Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation 99: 2750–6

    CAS  PubMed  Google Scholar 

  14. Torre-Amione G, Stetson SJ, Youker KA, Durand JB, Radovancevic B, Delgado RM, Frazier OH, Entman ML, Noon GP (1999) Decreased expression of tumor necrosis factor-alpha in failing human myocardium after mechanical circulatory support: A potential mechanism for cardiac recovery. Circulation 100: 1189–93

    CAS  PubMed  Google Scholar 

  15. Felkin LE, Birks EJ, George R, Wong S, Khaghani A, Yacoub MH, Barton PJ (2006) A quantitative gene expression profile of matrix metalloproteinases (MMPS) and their inhibitors (TIMPS) in the myocardium of patients with deteriorating heart failure requiring left ventricular assist device support. J Heart Lung Transplant 25: 1413–9

    PubMed  Google Scholar 

  16. Torre-Amione G, Kapadia S, Lee J, Bies RD, Lebovitz R, Mann DL (1995) Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 92: 1487–93

    CAS  PubMed  Google Scholar 

  17. Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL (1996) Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: A report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol 27: 1201–6

    CAS  PubMed  Google Scholar 

  18. Torre-Amione G (2005) Immune activation in chronic heart failure. Am J Cardiol 95: 3C–8C; discussion 38C–40C

    CAS  PubMed  Google Scholar 

  19. Siwik DA, Chang DL, Colucci WS (2000) Interleukin-1beta and tumor necrosis factoralpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts vitro. Circ Res 86: 1259–65

    CAS  PubMed  Google Scholar 

  20. Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL (2001) Cytokines and cytokine receptors in advanced heart failure: An analysis of the cytokine database from the Vesnarinone Trial (VEST). Circulation 103: 2055–2059

    CAS  PubMed  Google Scholar 

  21. Mauviel A (1993) Cytokine regulation of metalloproteinase gene expression. J Cell Biochem 53: 288–95

    CAS  PubMed  Google Scholar 

  22. Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 378: 151–60

    CAS  PubMed  Google Scholar 

  23. Holzmann M, Nicko A, Kühl U, Noutsias M, Poller W, Hoffmann W, Morguet A, Witzenbichler B, Tschope C, Schultheiss HP et al (2008) Complication rate of right ventricular endomyocardial biopsy via the femoral approach: A retrospective and prospective study analyzing 3048 diagnostic procedures over an 11-year period. Circulation 118: 1722–8

    PubMed  Google Scholar 

  24. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, Olsen E, Thiene G, Goodwin J, Gyarfas I et al (1996) Report of the 1995 World Health Organization/ International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93: 841–2

    CAS  PubMed  Google Scholar 

  25. Noutsias M, Pauschinger M, Schultheiss HP, Kühl U (2002) Advances in the immunohistological diagnosis of inflammatory cardiomyopathy. Eur Heart J Supplement 4: I54–I62

    Google Scholar 

  26. Noutsias M, Pauschinger M, Ostermann K, Escher F, Blohm JH, Schultheiss H, Kühl U (2002) Digital image analysis system for the quantification of infiltrates and cell adhesion molecules in inflammatory cardiomyopathy. Med Sci Monit 8: MT59–71

    CAS  PubMed  Google Scholar 

  27. Kühl U, Lassner D, Pauschinger M, Gross UM, Seeberg B, Noutsias M, Poller W, Schultheiss HP (2008) Prevalence of erythrovirus genotypes in the myocardium of patients with dilated cardiomyopathy. J Med Virol 80: 1243–1251

    PubMed  Google Scholar 

  28. Pankuweit S, Moll R, Baandrup U, Portig I, Hufnagel G, Maisch B (2003) Prevalence of the parvovirus B19 genome in endomyocardial biopsy specimens. Hum Pathol 34: 497–503

    PubMed  Google Scholar 

  29. Pankuweit S, Richter A, Ruppert V, Maisch B (2009) [Classification of cardiomyopathies and indication for endomyocardial biopsy revisited]. Herz 34: 55–62

    PubMed  Google Scholar 

  30. Kawai C (1999) From myocarditis to cardiomyopathy: Mechanisms of inflammation and cell death: Learning from the past for the future. Circulation 99: 1091–100

    CAS  PubMed  Google Scholar 

  31. Feldman AM, McNamara D (2000) Medical Progress: Myocarditis. N Engl J Med 343: 1388–1398

    CAS  PubMed  Google Scholar 

  32. Noutsias M, Pauschinger M, Poller WC, Schultheiss HP, Kühl U (2004) Immunomodulatory treatment strategies in inflammatory cardiomyopathy: current status and future perspectives. Expert Rev Cardiovasc Ther 2: 37–51

    CAS  PubMed  Google Scholar 

  33. Godeny EK, Gauntt CJ (1987) Murine natural killer cells limit coxsackievirus B3 replication. J Immunol 139: 913–8

    CAS  PubMed  Google Scholar 

  34. Liu PP, Mason JW (2001) Advances in the understanding of myocarditis. Circulation 104: 1076–82

    CAS  PubMed  Google Scholar 

  35. Deonarain R, Cerullo D, Fuse K, Liu PP, Fish EN (2004) Protective role for interferonbeta in coxsackievirus B3 infection. Circulation 110: 3540–3

    CAS  PubMed  Google Scholar 

  36. Noutsias M, Pauschinger M, Poller WC, Schultheiss HP, Kuhl U (2004) Immunomodulatory treatment strategies in inflammatory cardiomyopathy: Current status and future perspectives. Expert Rev Cardiovasc Ther 2: 37–51

    CAS  PubMed  Google Scholar 

  37. Keogh AM, Billingham ME, Schroeder JS (1990) Rapid histological changes in endomyocardial biopsy specimens after myocarditis. Br Heart J 64: 406–8

    CAS  PubMed  Google Scholar 

  38. Mendes LA, Picard MH, Dec GW, Hartz VL, Palacios IF, Davidoff R (1999) Ventricular remodeling in active myocarditis. Myocarditis Treatment Trial. Am Heart J 138: 303–8

    CAS  PubMed  Google Scholar 

  39. Kishimoto C, Kitazawa M, Hiraoka Y, Takada H (1997) Extracellular matrix remodeling in coxsackievirus B3 myocarditis. Clin Immunol Immunopathol 85: 47–55

    CAS  PubMed  Google Scholar 

  40. Seko Y, Takahashi N, Yagita H, Okumura K, Yazaki Y (1997) Expression of cytokine mRNAs in murine hearts with acute myocarditis caused by coxsackievirus b3. J Pathol 183: 105–8

    CAS  PubMed  Google Scholar 

  41. Li J, Leschka S, Rutschow S, Schwimmbeck PL, Husmann L, Noutsias M, Westermann D, Poller W, Zeichhardt H, Klingel K et al (2007) Immunomodulation by interleukin-4 suppresses matrix metalloproteinases and improves cardiac function in murine myocarditis. Eur J Pharmacol 554: 60–8

    CAS  PubMed  Google Scholar 

  42. McCarthy RE 3rd, Boehmer JP, Hruban RH, Hutchins GM, Kasper EK, Hare JM, Baughman KL (2000) Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. N Engl J Med 342: 690–5

    PubMed  Google Scholar 

  43. Herzum M, Weller R, Jomaa H, Wietrzychowski F, Pankuweit S, Mahr P, Maisch B (1995) Left ventricular hemodynamic parameters in the course of acute experimental coxsackievirus B 3 myocarditis. J Mol Cell Cardiol 27: 1573–80

    CAS  PubMed  Google Scholar 

  44. Feldman AM, McNamara D (2000) Myocarditis. N Engl J Med 343: 1388–98

    CAS  PubMed  Google Scholar 

  45. Kyu B, Matsumori A, Sato Y, Okada I, Chapman NM, Tracy S (1992) Cardiac persis tence of cardioviral RNA detected by polymerase chain reaction in a murine model of dilated cardiomyopathy. Circulation 86: 522–30

    CAS  PubMed  Google Scholar 

  46. Klingel K, Hohenadl C, Canu A, Albrecht M, Seemann M, Mall G, Kandolf R (1992) Ongoing enteroviru s-induced myocarditis is associated with persistent heart muscle infection: Quantitative analysis of virus replication, tissue damage, and inflammation. Proc Natl Acad Sci USA 89: 314–8

    CAS  PubMed  Google Scholar 

  47. Why HJ, Meany BT, Richardson PJ, Olsen EG, Bowles NE, Cunningham L, Freeke CA, Archard LC (1994) Clinical and prognostic significance of detection of enteroviral RNA in the myocardium of patients with myocarditis or dilated cardiomyopathy. Circulation 89: 2582–9

    CAS  PubMed  Google Scholar 

  48. Fujioka S, Kitaura Y, Ukimura A, Deguchi H, Kawamura K, Isomura T, Suma H, Shimizu A (2000) Evaluation of viral infection in the myocardium of patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 36: 1920–6

    CAS  PubMed  Google Scholar 

  49. Fakhouri F, Placier S, Ardaillou R, Dussaule JC, Chatziantoniou C (2001) Angiotensin II activates collagen type I gene in the renal cortex and aorta of transgenic mice through interaction with endothelin and TGF-beta. J Am Soc Nephrol 12: 2701–10

    CAS  PubMed  Google Scholar 

  50. Tharaux PL, Chatziantoniou C, Fakhouri F, Dussaule JC (2000) Angiotensin II activates collagen I gene through a mechanism involving the MAP/ER kinase pathway. Hypertension 36: 330–6

    CAS  PubMed  Google Scholar 

  51. Smits JF, van Krimpen C, Schoemaker RG, Cleutjens JP, Daemen MJ (1992) Angiotensin II receptor blockade after myocardial infarction in rats: Effects on hemodynamics, myocardial DNA synthesis, and interstitial collagen content. J Cardiovasc Pharmacol 20: 772–8

    CAS  PubMed  Google Scholar 

  52. Li YY, McTiernan CF, Feldman AM (1999) Proinflammatory cytokines regulate tissue inhibitors of metalloproteinases and disintegrin metalloproteinase in cardiac cells. Cardiovasc Res 42: 162–72

    CAS  PubMed  Google Scholar 

  53. Weber KT, Anversa P, Armstrong PW, Brilla CG, Burnett JC Jr, Cruickshank JM, Devereux RB, Giles TD, Korsgaard N, Leier CV et al (1992) Remodeling and reparation of the cardiovascular system. J Am Coll Cardiol 20: 3–16

    CAS  PubMed  Google Scholar 

  54. Woessner JF Jr (1999) Matrix metalloproteinase inhibition. From the Jurassic to the third millennium. Ann N Y Acad Sci 878: 388–403

    CAS  PubMed  Google Scholar 

  55. Coker ML, Zellner JL, Crumbley AJ, Spinale FG (1999) Defects in matrix metalloproteinase inhibitory stoichiometry and selective MMP induction in patients with nonischemic or ischemic dilated cardiomyopathy. Ann N Y Acad Sci 878: 559–62

    CAS  PubMed  Google Scholar 

  56. Coker ML, Doscher MA, Thomas CV, Galis ZS, Spinale FG (1999) Matrix metalloproteinase synthesis and expression in isolated LV myocyte preparations. Am J Physiol 277: H777–87

    CAS  PubMed  Google Scholar 

  57. Tao ZY, Cavasin MA, Yang F, Liu YH, Yang XP (2004) Temporal changes in matrix metalloproteinase expression and inflammatory response associated with cardiac rupture after myocardial infarction in mice. Life Sci 74: 1561–72

    CAS  PubMed  Google Scholar 

  58. Toth M, Chvyrkova I, Bernardo MM, Hernandez-Barrantes S, Fridman R (2003) Pro MMP-9 activation by the MT1-MMP/MMP-2 axis and MMP-3: Role of TIMP-2 and plasma membranes. Biochem Biophys Res Commun 308: 386–95

    CAS  PubMed  Google Scholar 

  59. Miyamori H, Takino T, Seiki M, Sato H (2000) Human membrane type-2 matrix metalloproteinase is defective in cell-associated activation of progelatinase A. Biochem Biophys Res Commun 267: 796–800

    CAS  PubMed  Google Scholar 

  60. Maquart FX, Pickart L, Laurent M, Gillery P, Monboisse JC, Borel JP (1988) Stimulation of collagen synthesis in fibroblast cultures by the tripeptide-copper complex glycyll-histidyl-l-lysine-Cu2+. FEBS Lett 238: 343–6

    CAS  PubMed  Google Scholar 

  61. Diekmann O, Tschesche H (1994) Degradation of kinins, angiotensins and substance P by polymorphonuclear matrix metalloproteinases MMP 8 and MMP 9. Braz J Med Biol Res 27: 1865–76

    CAS  PubMed  Google Scholar 

  62. Kridel SJ, Chen E, Kotra LP, Howard EW, Mobashery S, Smith JW (2001) Substrate hydrolysis by matrix metalloproteinase-9. J Biol Chem 276: 20572–8

    CAS  PubMed  Google Scholar 

  63. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161–74

    CAS  PubMed  Google Scholar 

  64. Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: An overview. Mol Cell Biochem 253: 269–85

    CAS  PubMed  Google Scholar 

  65. Levick SP, Brower GL (2008) Regulation of matrix metalloproteinases is at the heart of myocardial remodeling. Am J Physiol Heart Circ Physiol 295: H1375–6

    CAS  PubMed  Google Scholar 

  66. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8: 221–33

    CAS  PubMed  Google Scholar 

  67. Sivasubramanian N, Coker ML, Kurrelmeyer KM, MacLellan WR, DeMayo FJ, Spinale FG, Mann DL (2001) Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 104: 826–31

    CAS  PubMed  Google Scholar 

  68. Zhou M, Zhang Y, Ardans JA, Wahl LM (2003) Interferon-gamma differentially regulates monocyte matrix metalloproteinase-1 and-9 through tumor necrosis factor-alpha and caspase 8. J Biol Chem 278: 45406–13

    CAS  PubMed  Google Scholar 

  69. Wahl SM, Allen JB, Weeks BS, Wong HL, Klotman PE (1993) Transforming growth factor beta enhances integrin expression and type IV collagenase secretion in human monocytes. Proc Natl Acad Sci USA 90: 4577–81

    CAS  PubMed  Google Scholar 

  70. Coker ML, Jolly JR, Joffs C, Etoh T, Holder JR, Bond BR, Spinale FG (2001) Matrix metalloproteinase expression and activity in isolated myocytes after neurohormonal stimulation. Am J Physiol Heart Circ Physiol 281: H543–51

    CAS  PubMed  Google Scholar 

  71. Reinhardt D, Sigusch HH, Hensse J, Tyagi SC, Korfer R, Figulla HR (2002) Cardiac remodelling in end stage heart failure: Upregulation of matrix metalloproteinase (MMP) irrespective of the underlying disease, and evidence for a direct inhibitory effect of ACE inhibitors on MMP. Heart 88: 525–30

    CAS  PubMed  Google Scholar 

  72. Masutomo K, Makino N, Fushiki MS (2001) Effects of losartan on the collagen degradative enzymes in hypertrophic and congestive types of cardiomyopathic hamsters. Mol Cell Biochem 224: 19–27

    CAS  PubMed  Google Scholar 

  73. Rosano L, Varmi M, Salani D, Di Castro V, Spinella F, Natali PG, Bagnato A (2001) Endothelin-1 induces tumor proteinase activation and invasiveness of ovarian carcinoma cells. Cancer Res 61: 8340–6

    CAS  PubMed  Google Scholar 

  74. Tsuruda T, Boerrigter G, Huntley BK, Noser JA, Cataliotti A, Costello-Boerrigter LC, Chen HH, Burnett JC Jr (2002) Brain natriuretic Peptide is produced in cardiac fibroblasts and induces matrix metalloproteinases. Circ Res 91: 1127–34

    CAS  PubMed  Google Scholar 

  75. He CS, Wilhelm SM, Pentland AP, Marmer BL, Grant GA, Eisen AZ, Goldberg GI (1989) Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc Natl Acad Sci USA 86: 2632–6

    CAS  PubMed  Google Scholar 

  76. Heymans S, Lupu F, Terclavers S, Vanwetswinkel B, Herbert JM, Baker A, Collen D, Carmeliet P, Moons L (2005) Loss or inhibition of uPA or MMP-9 attenuates LV remodeling and dysfunction after acute pressure overload in mice. Am J Pathol 166: 15–25

    CAS  PubMed  Google Scholar 

  77. Saksela O, Rifkin DB (1988) Cell-associated plasminogen activation: Regulation and physiological functions. Annu Rev Cell Biol 4: 93–126

    CAS  PubMed  Google Scholar 

  78. Nerlov C, Rorth P, Blasi F, Johnsen M (1991) Essential AP-1 and PEA3 binding elements in the human urokinase enhancer display cell type-specific activity. Oncogene 6: 1583–92

    CAS  PubMed  Google Scholar 

  79. Ogura N, Tobe M, Tamaki H, Nagura H, Abiko Y (2001) IL-1beta increases uPA and uPA receptor expression in human gingival fibroblasts. IUBMB Life 51: 381–5

    CAS  PubMed  Google Scholar 

  80. Lijnen HR, Arza B, Van Hoef B, Collen D, Declerck PJ (2000) Inactivation of plasminogen activator inhibitor-1 by specific proteolysis with stromelysin-1 (MMP-3). J Biol Chem 275: 37645–50

    CAS  PubMed  Google Scholar 

  81. Lijnen HR, Van Hoef B, Collen D (2001) Inactivation of the serpin alpha(2)-antiplasmin by stromelysin-1. Biochim Biophys Acta 1547: 206–13

    CAS  PubMed  Google Scholar 

  82. Spinale FG (2002) Matrix metalloproteinases: Regulation and dysregulation in the failing heart. Circ Res 90: 520–30

    CAS  PubMed  Google Scholar 

  83. Li YY, McTiernan CF, Feldman AM (2000) Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res 46: 214–24

    CAS  PubMed  Google Scholar 

  84. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: Evolution, structure and function. Biochim Biophys Acta 1477: 267–83

    CAS  PubMed  Google Scholar 

  85. Amour A, Slocombe PM, Webster A, Butler M, Knight CG, Smith BJ, Stephens PE, Shelley C, Hutton M, Knauper V et al (1998) TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 435: 39–44

    CAS  PubMed  Google Scholar 

  86. Nagase H, Suzuki K, Morodomi T, Enghild JJ, Salvesen G (1992) Activation mechanisms of the precursors of matrix metalloproteinases 1, 2 and 3. Matrix Suppl 1: 237–44

    CAS  PubMed  Google Scholar 

  87. Nagase H, Itoh Y, Binner S (1994) Interaction of alpha 2-macroglobulin with matrix metalloproteinases and its use for identification of their active forms. Ann N Y Acad Sci 732: 294–302

    CAS  PubMed  Google Scholar 

  88. Moutsiakis D, Mancuso P, Krutzsch H, Stetler-Stevenson W, Zucker S (1992) Characterization of metalloproteinases and tissue inhibitors of metalloproteinases in human plasma. Connect Tissue Res 28: 213–30

    CAS  PubMed  Google Scholar 

  89. Levine B, Kalman J, Mayer L, Fillit HM, Packer M (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323: 236–41

    CAS  PubMed  Google Scholar 

  90. Ferrari R (1999) The role of TNF in cardiovascular disease. Pharmacol Res 40: 97–105

    CAS  PubMed  Google Scholar 

  91. Feldman AM, Combes A, Wagner D, Kadakomi T, Kubota T, Li YY, McTiernan C (2000) The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Cardiol 35: 537–44

    CAS  PubMed  Google Scholar 

  92. Aukrust P, Ueland T, Lien E, Bendtzen K, Muller F, Andreassen AK, Nordoy I, Aass H, Espevik T, Simonsen S et al (1999) Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 83: 376–82

    CAS  PubMed  Google Scholar 

  93. Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, Feldman AM (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 81: 627–35

    CAS  PubMed  Google Scholar 

  94. Niebauer J, Volk HD, Kemp M, Dominguez M, Schumann RR, Rauchhaus M, Poole-Wilson PA, Coats AJ, Anker SD (1999) Endotoxin and immune activation in chronic heart failure: A prospective cohort study. Lancet 353: 1838–42

    CAS  PubMed  Google Scholar 

  95. Rauchhaus M, Coats AJ, Anker SD (2000) The endotoxin-lipoprotein hypothesis. Lancet 356: 930–3

    CAS  PubMed  Google Scholar 

  96. Sharma R, Bolger AP, Li W, Davlouros PA, Volk HD, Poole-Wilson PA, Coats AJ, Gatzoulis MA, Anker SD (2003) Elevated circulating levels of inflammatory cytokines and bacterial endotoxin in adults with congenital heart disease. Am J Cardiol 92: 188–93

    CAS  PubMed  Google Scholar 

  97. Anker SD, von Haehling S (2004) Inflammatory mediators in chronic heart failure: An overview. Heart 90: 464–70

    CAS  PubMed  Google Scholar 

  98. Liu L, Zhao SP (1999) The changes of circulating tumor necrosis factor levels in patients with congestive heart failure influenced by therapy. Int J Cardiol 69: 77–82

    CAS  PubMed  Google Scholar 

  99. Torre-Amione G, Stetson SJ, Youker KA, Durand JB, Radovancevic B, Delgado RM, Frazier OH, Entman ML, Noon GP (1999) Decreased expression of tumor necrosis factor-alpha in failing human myocardium after mechanical circulatory support: A potential mechanism for cardiac recovery. Circulation 100: 1189–93

    CAS  PubMed  Google Scholar 

  100. Bruggink AH, van Oosterhout MF, De Jonge N, Gmelig-Meyling FH, De Weger RA (2008) TNFalpha in patients with end-stage heart failure on medical therapy or supported by a left ventricular assist device. Transpl Immunol 19: 64–8

    CAS  PubMed  Google Scholar 

  101. Adamopoulos S, Parissis J, Karatzas D, Kroupis C, Georgiadis M, Karavolias G, Paraskevaidis J, Koniavitou K, Coats AJ, Kremastinos DT (2002) Physical training modulates proinflammatory cytokines and the soluble Fas/soluble Fas ligand system in patients with chronic heart failure. J Am Coll Cardiol 39: 653–63

    CAS  PubMed  Google Scholar 

  102. Barnes PJ, Karin M (1997) Nuclear factor-kappaB: A pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336: 1066–71

    CAS  PubMed  Google Scholar 

  103. Murray DR, Prabhu SD, Chandrasekar B (2000) Chronic beta-adrenergic stimulation induces myocardial proinflammatory cytokine expression. Circulation 101: 2338–41

    CAS  PubMed  Google Scholar 

  104. Chappel CI, Rona G, Balazs T, Gaudry R (1959) Severe myocardial necrosis produced by isoproterenol in the rat. Arch Int Pharmacodyn Ther 122: 123–8

    CAS  PubMed  Google Scholar 

  105. Boluyt MO, Long X, Eschenhagen T, Mende U, Schmitz W, Crow MT, Lakatta EG (1995) Isoproterenol infusion induces alterations in expression of hypertrophy-associated genes in rat heart. Am J Physiol 269: H638–47

    CAS  PubMed  Google Scholar 

  106. Woodiwiss AJ, Tsotetsi OJ, Sprott S, Lancaster EJ, Mela T, Chung ES, Meyer TE, Norton GR (2001) Reduction in myocardial collagen cross-linking parallels left ventricular dilatation in rat models of systolic chamber dysfunction. Circulation 103: 155–60

    CAS  PubMed  Google Scholar 

  107. Okada Y, Naka K, Kawamura K, Matsumoto T, Nakanishi I, Fujimoto N, Sato H, Seiki M (1995) Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: Implications for bone resorption. Lab Invest 72: 311–22

    CAS  PubMed  Google Scholar 

  108. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z, Libby P et al (2000) Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 106: 55–62

    CAS  PubMed  Google Scholar 

  109. Heymans S, Pauschinger M, De Palma A, Kallwellis-Opara A, Rutschow S, Swinnen M, Vanhoutte D, Gao F, Torpai R, Baker AH et al (2006) Inhibition of urokinase-type plasminogen activator or matrix metalloproteinases prevents cardiac injury and dysfunction during viral myocarditis. Circulation 114: 565–73

    CAS  PubMed  Google Scholar 

  110. Leipner C, Grun K, Muller A, Buchdunger E, Borsi L, Kosmehl H, Berndt A, Janik T, Uecker A, Kiehntopf M et al (2008) Imatinib mesylate attenuates fibrosis in coxsackievirus b3-induced chronic myocarditis. Cardiovasc Res 79: 118–26

    CAS  PubMed  Google Scholar 

  111. Hudson MP, Armstrong PW, Ruzyllo W, Brum J, Cusmano L, Krzeski P, Lyon R, Quinones M, Theroux P, Sydlowski D et al (2006) Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: Results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. J Am Coll Cardiol 48: 15–20

    CAS  PubMed  Google Scholar 

  112. Nishio R, Shioi T, Sasayama S, Matsumori A (2003) Carvedilol increases the production of interleukin-12 and interferon-gamma and improves the survival of mice infected with the encephalomyocarditis virus. J Am Coll Cardiol 41: 340–5

    CAS  PubMed  Google Scholar 

  113. Lopez BL, Christopher TA, Yue TL, Ruffolo R, Feuerstein GZ, Ma XL (1995) Carvedilol, a new beta-adrenoreceptor blocker antihypertensive drug, protects against freeradical-induced endothelial dysfunction. Pharmacology 51: 165–73

    CAS  PubMed  Google Scholar 

  114. Yue TL, McKenna PJ, Gu JL, Cheng HY, Ruffolo RE Jr, Feuerstein GZ (1994) Carvedilol, a new vasodilating beta adrenoceptor blocker antihypertensive drug, protects endothelial cells from damage initiated by xanthine-xanthine oxidase and neutrophils. Cardiovasc Res 28: 400–6

    CAS  PubMed  Google Scholar 

  115. Pauschinger M, Doerner A, Remppis A, Tannhauser R, Kühl U, Schultheiss HP (1998) Differential myocardial abundance of collagen type I and type III mRNA in dilated cardiomyopathy: Effects of myocardial inflammation. Cardiovasc Res 37: 123–9

    CAS  PubMed  Google Scholar 

  116. Pauschinger M, Chandrasekharan K, Li J, Poller WC, Noutsias M, Tschöpe C, Schultheiss HP (2002) Inflammation and extracellular matrix protein metabolism: Two sides of myocardial remodelling. Eur Heart J 4: I49–I55

    CAS  Google Scholar 

  117. Pauschinger M, Hoppe K, Schwimmbeck PL (2003) Relevance of myocardial inflammation for the activation of matrix metalloproteinase expression in patients with inflammatory cardiomyopathy. Circulation 108: 24

    Google Scholar 

  118. Schwartzkopff B, Fassbach M, Pelzer B, Brehm M, Strauer BE (2002) Elevated serum markers of collagen degradation in patients with mild to moderate dilated cardiomyopathy. Eur J Heart Fail 4: 439–4

    CAS  PubMed  Google Scholar 

  119. Klappacher G, Franzen P, Haab D, Mehrabi M, Binder M, Plesch K, Pacher R, Grimm M, Pribill I, Eichler HG (1995) Measuring extracellular matrix turnover in the serum of patients with idiopathic or ischemic dilated cardiomyopathy and impact on diagnosis and prognosis. Am J Cardiol 75: 913–8

    CAS  PubMed  Google Scholar 

  120. Frantz S, Stork S, Michels K, Eigenthaler M, Ertl G, Bauersachs J, Angermann CE (2008) Tissue inhibitor of metalloproteinases levels in patients with chronic heart failure: An independent predictor of mortality. Eur J Heart Fail 10: 388–95

    CAS  PubMed  Google Scholar 

  121. George J, Patal S, Wexler D, Roth A, Sheps D, Keren G (2005) Circulating matrix metalloproteinase-2 but not matrix metalloproteinase-3, matrix metalloproteinase-9, or tissue inhibitor of metalloproteinase-1 predicts outcome in patients with congestive heart failure. Am Heart J 150: 484–7

    CAS  PubMed  Google Scholar 

  122. Kelly D, Khan S, Cockerill G, Ng LL, Thompson M, Samani NJ, Squire IB (2008) Circulating stromelysin-1 (MMP-3): A novel predictor of LV dysfunction, remodelling and all-cause mortality after acute myocardial infarction. Eur J Heart Fail 10: 133–9

    CAS  PubMed  Google Scholar 

  123. Mizon-Gerard F, de Groote P, Lamblin N, Hermant X, Dallongeville J, Amouyel P, Bauters C, Helbecque N (2004) Prognostic impact of matrix metalloproteinase gene polymorphisms in patients with heart failure according to the aetiology of left ventricular systolic dysfunction. Eur Heart J 25: 688–93

    CAS  PubMed  Google Scholar 

  124. Kühl U, Schultheiss HP (1995) Treatment of chronic myocarditis with corticosteroids. Eur Heart J 16: 168–72

    PubMed  Google Scholar 

  125. Kühl U, Pauschinger M, Schwimmbeck PL, Seeberg B, Lober C, Noutsias M, Poller W, Schultheiss HP (2003) Interferon-beta treatment eliminates cardiotropic viruses and improves left ventricular function in patients with myocardial persistence of viral genomes and left ventricular dysfunction. Circulation 107: 2793–8

    PubMed  Google Scholar 

  126. Felix SB, Staudt A (2006) Non-specific immunoadsorption in patients with dilated cardiomyopathy: Mechanisms and clinical effects. Int J Cardiol 112: 30–3

    PubMed  Google Scholar 

  127. Wojnicz R, Nowalany-Kozielska E, Wojciechowska C, Glanowska G, Wilczewski P, Niklewski T, Zembala M, Polonski L, Rozek MM, Wodniecki J (2001) Randomized, placebo-controlled study for immunosuppressive treatment of inflammatory dilated cardiomyopathy: Two-year follow-up results. Circulation 104: 39–45

    CAS  PubMed  Google Scholar 

  128. Pankuweit S, Funck R, Grimm W, Maisch B (2006) [Diagnosis and treatment of inflammatory heart diseases: Role of endomyocardial biopsy]. Herz 31: 361–5

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Basel

About this chapter

Cite this chapter

Rutschow, S., Noutsias, M., Pauschinger, M. (2010). Myocardial Proteases and Matrix Remodeling in Acute Myocarditis and Inflammatory Cardiomyopathy. In: Schultheiss, HP., Noutsias, M. (eds) Inflammatory Cardiomyopathy (DCMi). Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8352-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7643-8352-7_5

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-8351-0

  • Online ISBN: 978-3-7643-8352-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics