Skip to main content

Immunotoxicology and Its Application in Risk Assessment

  • Chapter
  • First Online:
Molecular, Clinical and Environmental Toxicology

Part of the book series: Experientia Supplementum ((EXS,volume 101))

Abstract

Immunotoxicology is the study of undesired modulation of the immune system by extrinsic factors. Toxicological assessments have demonstrated that the immune system is a target following exposure to a diverse group of xenobiotics including ultraviolet radiation, chemical pollutants, therapeutics, and recreational drugs. There is a well-established cause and effect relationship between suppression of the immune response and reduced resistance to infections and certain types of neoplasia. In humans, mild-to-moderate suppression of the immune response is linked to reduced resistance to common community-acquired infections, whereas opportunistic infections, which are very rare in the general population, are common in individuals with severe suppression. Xenobiotic exposure may also result in unintended stimulation of immune function. Although a cause and effect relationship between unintended stimulation of the immune response and adverse consequences has yet to be established, evidence does suggest that hypersensitivity, autoimmunity, and pathological inflammation may be exacerbated in susceptible populations exposed to certain xenobiotics. Xenobiotics can act as allergens and elicit hypersensitivity responses, or they can modulate hypersensitivity responses to other allergens such as pollen or dust mite by acting as adjuvants, enhancing the development or expression of hypersensitivity. Allergic contact dermatitis, allergic rhinitis, and asthma are the most commonly encountered types of hypersensitivity reactions resulting from chemical exposure. The immunologic effectors and mechanisms involved in autoimmune reactions are the same as those associated with responses to foreign antigens; however, the reactions are directed against the host’s own cells. Thus, chemicals that induce immune suppression, nonspecific immunostimulation, or hypersensitivity may also impact autoimmunity. Risk assessment for immunotoxicity should be performed using the same approaches and principles for other noncancer effects. However, since xenobiotics may have effects on more than one aspect of immune function, immunotoxicity data should be evaluated separately for evidence of suppression, stimulation, hypersensitivity, and autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luebke RW, Chen D, Dietert R, Yang Y, King M, Luster M (2006) The comparative immunotoxicity of five selected compounds following developmental or adult exposure. J Toxicol Environ Health B Crit Rev 9:1–26

    Article  PubMed  CAS  Google Scholar 

  2. Descotes J (2003) From clinical to human toxicology: linking animal research and risk assessment in man. Toxicol Lett 140–141:3–10

    Article  PubMed  CAS  Google Scholar 

  3. Vos JG, Van Loveren H (1998) Experimental studies on immunosuppression: how do they predict for man? Toxicology 129:13–26

    Article  PubMed  CAS  Google Scholar 

  4. van Loveren H, Cockshott A, Gebel T, Gundert-Remy U, de Jong WH, Matheson J, McGarry H, Musset L, Selgrade MK, Vickers C (2008) Skin sensitization in chemical risk assessment: report of a WHO/IPCS international workshop focusing on dose-response assessment. Regul Toxicol Pharmacol 50:155–199

    Article  PubMed  Google Scholar 

  5. Gerberick FG, Ryan CA, Dearman RJ, Kimber I (2007) Local lymph node assay (LLNA) for detection of sensitization capacity of chemicals. Methods 41:54–60

    Article  PubMed  CAS  Google Scholar 

  6. Basketter DA, Evans P, Fielder RJ, Gerberick GF, Dearman RJ, Kimber I (2002) Local lymph node assay―validation, conduct and use in practice. Food Chem Toxicol 40:593–598

    Article  PubMed  CAS  Google Scholar 

  7. WHO (2006) Principles and methods for assessing autoimmunity associated with exposure to chemicals, IPCS environmental health criteria 236. International programme on chemical safety. World Health Organization, Geneva, Switzerland

    Google Scholar 

  8. Selgrade MK (2007) Immunotoxicity: the risk is real. Toxicol Sci 100:328–332

    Article  PubMed  CAS  Google Scholar 

  9. Koller LD (2001) A perspective on the progression of immunotoxicology. Toxicology 160:105–110

    Article  PubMed  CAS  Google Scholar 

  10. Luebke RW, Parks C, Luster MI (2004) Suppression of immune function and susceptibility to infections in humans: association of immune function with clinical disease. J Immunotoxicol 1:15–24

    Article  PubMed  Google Scholar 

  11. Luster MI, Blanciforti LM, Germolec DR, Parks C, Kashon M, Luebke R (2004) Associating changes in the immune system with clinical diseases for interpretation in risk assessment. In: Maines M, Costa L, Reed D, Hodgson E (eds) Current protocols in toxicology. Wiley, New York, NY

    Google Scholar 

  12. Dietert RR (2008) Developmental immunotoxicology (DIT): windows of vulnerability, immune dysfunction and safety assessment. J Immunotoxicol 5:401–412

    Article  PubMed  Google Scholar 

  13. Van Loveren H, Van Amsterdam JG, Vandebriel RJ, Kimman TG, Rumke HC, Steerenberg PS, Vos JG (2001) Vaccine-induced antibody responses as parameters of the influence of endogenous and environmental factors. Environ Health Perspect 109:757–764

    Article  PubMed  Google Scholar 

  14. Gans H, DeHovitz R, Forghani B, Beeler J, Maldonado Y, Arvin AM (2003) Measles and mumps vaccination as a model to investigate the developing immune system: passive and active immunity during the first year of life. Vaccine 21:3398–3405

    Article  PubMed  CAS  Google Scholar 

  15. Van Loveren H, Germolec D, Koren H, Luster M, Nolan C, Repetto R, Smith E, Vos JG, Vogt R (1999) Report of the Bilthoven symposium: advancement of epidemiological studies in assessing the human health effects of immunotoxic agents in the environment and the workplace. Biomarkers 4:135–157

    Article  Google Scholar 

  16. Luster MI, Portier C, Pait DG, White KL Jr, Gennings C, Munson AE, Rosenthal GJ (1992) Risk assessment in immunotoxicology. I. Sensitivity and predictability of immune tests. Fundam Appl Toxicol 18:200–210

    Article  PubMed  CAS  Google Scholar 

  17. Luster MI, Portier C, Pait DG, Rosenthal GJ, Germolec DR, Corsini E, Blaylock BL, Pollock P, Kouchi Y, Craig W, White KL, Munson AE, Comment CE (1993) Risk assessment in immunotoxicology. II. Relationships between immune and host resistance tests. Fundam Appl Toxicol 21:71–82

    Article  PubMed  CAS  Google Scholar 

  18. Yang EV, Glaser R (2000) Stress-induced immunomodulation: impact on immune defenses against infectious disease. Biomed Pharmacother 54:245–250

    Article  PubMed  CAS  Google Scholar 

  19. Glaser R, Pearson GR, Bonneau RH, Esterling BA, Atkinson C, Kiecolt-Glaser JK (1993) Stress and the memory T-cell response to the Epstein–Barr virus in healthy medical students. Health Psychol 12:435–442

    Article  PubMed  CAS  Google Scholar 

  20. Glaser R, Rice J, Sheridan J, Fertel R, Stout J, Speicher C, Pinsky D, Kotur M, Post A, Beck M (1987) Stress-related immune suppression: health implications. Brain Behav Immun 1:7–20

    Article  PubMed  CAS  Google Scholar 

  21. Esterling BA, Antoni MH, Kumar M, Schneiderman N (1993) Defensiveness, trait anxiety, and Epstein–Barr viral capsid antigen antibody titers in healthy college students. Health Psychol 12:132–139

    Article  PubMed  CAS  Google Scholar 

  22. Cohen S (1995) Psychological stress and susceptibility to upper respiratory infections. Am J Respir Crit Care Med 152:S53–S58

    PubMed  CAS  Google Scholar 

  23. Biondi M, Zannino LG (1997) Psychological stress, neuroimmunomodulation, and susceptibility to infectious diseases in animals and man: a review. Psychother Psychosom 66:3–26

    Article  PubMed  CAS  Google Scholar 

  24. Kasl SV, Evans AS, Niederman JC (1979) Psychosocial risk factors in the developmental of infectious mononucleosis. Psychosom Med 41:445–466

    PubMed  CAS  Google Scholar 

  25. Cohen S, Tyrrell DA, Smith AP (1991) Psychological stress and susceptibility to the common cold. N Engl J Med 325:606–612

    Article  PubMed  CAS  Google Scholar 

  26. WHO (1996) Principles and methods for assessing direct immunotoxicity associated with exposure to chemicals, IPCS environmental health criteria 180. International programme on chemical safety. World Health Organization, Geneva, Switzerland

    Google Scholar 

  27. U.S. FDA (1999) Guidance for industry: immunotoxicity testing guidance. Report. Center for Devices and Radiological Health, Rockville, MD

    Google Scholar 

  28. U.S. FDA (2002) Guidance for industry: immunotoxicity evaluation of investigational new drugs. Report. Center for Drug Evaluation and Research, Rockville, MD

    Google Scholar 

  29. Lee AN, Werth VP (2004) Activation of autoimmunity following use of immunostimulatory herbal supplements. Arch Dermatol 140:723–727

    Article  PubMed  Google Scholar 

  30. Holvast B, Huckriede A, Kallenberg CG, Bijl M (2007) Influenza vaccination in systemic lupus erythematosus: safe and protective? Autoimmun Rev 6:300–305

    Article  PubMed  CAS  Google Scholar 

  31. Elkayam O, Ablin J, Caspi D (2007) Safety and efficacy of vaccination against Streptococcus pneumonia in patients with rheumatic diseases. Autoimmun Rev 6:312–314

    Article  PubMed  Google Scholar 

  32. Gluck T, Muller-Ladner U (2008) Vaccination in patients with chronic rheumatic or autoimmune diseases. Clin Infect Dis 46:1459–1465

    Article  PubMed  CAS  Google Scholar 

  33. Parks CG, Conrad K, Cooper GS (1999) Occupational exposure to crystalline silica and autoimmune disease. Environ Health Perspect 107(Suppl 5):793–802

    Article  PubMed  Google Scholar 

  34. Sterzl I, Prochazkova J, Hrda P, Matucha P, Bartova J, Stejskal V (2006) Removal of dental amalgam decreases anti-TPO and anti-Tg autoantibodies in patients with autoimmune thyroiditis. Neuro Endocrinol Lett 27(Suppl 1):25–30

    PubMed  CAS  Google Scholar 

  35. Gold DR, Burge HA, Carey V, Milton DK, Platts-Mills T, Weiss ST (1999) Predictors of repeated wheeze in the first year of life: the relative roles of cockroach, birth weight, acute lower respiratory illness, and maternal smoking. Am J Respir Crit Care Med 160:227–236

    PubMed  CAS  Google Scholar 

  36. Jaakkola JJ, Gissler M (2004) Maternal smoking in pregnancy, fetal development, and childhood asthma. Am J Public Health 94:136–140

    Article  PubMed  Google Scholar 

  37. Ng SP, Silverstone AE, Lai ZW, Zelikoff JT (2006) Effects of prenatal exposure to cigarette smoke on offspring tumor susceptibility and associated immune mechanisms. Toxicol Sci 89:135–144

    Article  PubMed  CAS  Google Scholar 

  38. Weisglas-Kuperus N, Patandin S, Berbers GA, Sas TC, Mulder PG, Sauer PJ, Hooijkaas H (2000) Immunologic effects of background exposure to polychlorinated biphenyls and dioxins in Dutch preschool children. Environ Health Perspect 108:1203–1207

    Article  PubMed  CAS  Google Scholar 

  39. Heilmann C, Grandjean P, Weihe P, Nielsen F, Budtz-Jorgensen E (2006) Reduced antibody responses to vaccinations in children exposed to polychlorinated biphenyls. PLoS Med 3:1352–1359

    Article  CAS  Google Scholar 

  40. Dallaire F, Dewailly E, Vezina C, Muckle G, Weber JP, Bruneau S, Ayotte P (2006) Effect of prenatal exposure to polychlorinated biphenyls on incidence of acute respiratory infections in preschool Inuit children. Environ Health Perspect 114:1301–1305

    Article  PubMed  CAS  Google Scholar 

  41. Gilmour MI, Selgrade MJK, Lambert AL (2000) Enhanced allergic sensitization in animals exposed to particulate air pollution. Inhal Toxicol 12(Suppl 3):373–380

    CAS  Google Scholar 

  42. Steerenberg PA, Withagen CE, van Dalen WJ, Dormans JA, Heisterkamp SH, van Loveren H, Cassee FR (2005) Dose dependency of adjuvant activity of particulate matter from five European sites in three seasons in an ovalbumin-mouse model. Inhal Toxicol 17:133–145

    Article  PubMed  CAS  Google Scholar 

  43. Gilmour MI, Jaakkola MS, London SJ, Nel AE, Rogers CA (2006) How exposure to environmental tobacco smoke, outdoor air pollutants, and increased pollen burdens influences the incidence of asthma. Environ Health Perspect 114:627–633

    Article  PubMed  CAS  Google Scholar 

  44. Selgrade MK, Illing JW, Starnes DM, Stead AG, Menache MG, Stevens MA (1988) Evaluation of effects of ozone exposure on influenza infection in mice using several indicators of susceptibility. Fundam Appl Toxicol 11:169–180

    Article  PubMed  CAS  Google Scholar 

  45. Teske S, Bohn AA, Hogaboam JP, Lawrence BP (2008) Aryl hydrocarbon receptor targets pathways extrinsic to bone marrow cells to enhance neutrophil recruitment during influenza virus infection. Toxicol Sci 102:89–99

    Article  PubMed  CAS  Google Scholar 

  46. Luebke RW, Copeland CB, Bishop LR, Daniels MJ, Gilmour MI (2002) Mortality in dioxin-exposed mice infected with influenza: mitochondrial toxicity (reye’s-like syndrome) versus enhanced inflammation as the mode of action. Toxicol Sci 69:109–116

    Article  PubMed  CAS  Google Scholar 

  47. Ryan LK, Copeland LR, Daniels MJ, Costa ER, Selgrade MJ (2002) Proinflammatory and Th1 cytokine alterations following ultraviolet radiation enhancement of disease due to influenza infection in mice. Toxicol Sci 67:88–97

    Article  PubMed  CAS  Google Scholar 

  48. Hudson CA, Cao L, Kasten-Jolly J, Kirkwood JN, Lawrence DA (2003) Susceptibility of lupus-prone NZM mouse strains to lead exacerbation of systemic lupus erythematosus symptoms. J Toxicol Environ Health A 66:895–918

    Article  PubMed  CAS  Google Scholar 

  49. Rodgers KE, Imamura T, Devens BH (1986) Organophosphorus pesticide immunotoxicity: effects of O,O,S-trimethyl phosphorothioate on cellular and humoral immune response systems. Immunopharmacology 12:193–202

    Article  PubMed  CAS  Google Scholar 

  50. Rodgers KE (1997) Effects of oral administration of malathion on the course of disease in MRL-lpr mice. J Autoimmun 10:367–373

    Article  PubMed  Google Scholar 

  51. Selgrade MJK, Germolec DR, Luebke RW, Smialowicz RJ, Ward MD, Bowman CB (2008) Immunotoxicology. In: Smart RC, Hodgson E (eds) Molecular and biochemical toxicology. Wiley, Hoboken, NJ, pp 765–803

    Chapter  Google Scholar 

  52. Kirchner DB (2002) The spectrum of allergic disease in the chemical industry. Int Arch Occup Environ Health 75(Suppl):S107–112

    Article  PubMed  Google Scholar 

  53. Treudler R, Kozovska Y, Simon JC (2008) Severe immediate type hypersensitivity reactions in 105 German adults: when to diagnose anaphylaxis. J Investig Allergol Clin Immunol 18:52–58

    PubMed  CAS  Google Scholar 

  54. WHO (1999) Principles and methods for assessing allergic hypersensitization associated with exposure to chemicals, IPCS environmental health criteria 212. International programme on chemical safety. World Health Organization, Geneva, Switzerland

    Google Scholar 

  55. Friedmann PS, Moss C, Shuster S, Simpson JM (1983) Quantitative relationships between sensitizing dose of DNCB and reactivity in normal subjects. Clin Exp Immunol 53:709–715

    PubMed  CAS  Google Scholar 

  56. Scott AE, Kashon ML, Yucesoy B, Luster MI, Tinkle SS (2002) Insights into the quantitative relationship between sensitization and challenge for allergic contact dermatitis reactions. Toxicol Appl Pharmacol 183:66–70

    Article  PubMed  CAS  Google Scholar 

  57. Friedmann PS (2007) The relationships between exposure dose and response in induction and elicitation of contact hypersensitivity in humans. Br J Dermatol 157:1093–1102

    Article  PubMed  CAS  Google Scholar 

  58. Andersen KE (2003) Occupational issues of allergic contact dermatitis. Int Arch Occup Environ Health 76:347–350

    Article  PubMed  Google Scholar 

  59. McNamee PM, Api AM, Basketter DA, Frank Gerberick G, Gilpin DA, Hall BM, Jowsey I, Robinson MK (2008) A review of critical factors in the conduct and interpretation of the human repeat insult patch test. Regul Toxicol Pharmacol 52:24–34

    Article  PubMed  Google Scholar 

  60. Kligman AM (1966) The identification of contact allergens by human assay. 3. The maximization test: a procedure for screening and rating contact sensitizers. J Invest Dermatol 47:393–409

    PubMed  CAS  Google Scholar 

  61. Politano VT, Api AM (2008) The research institute for fragrance materials’ human repeated insult patch test protocol. Regul Toxicol Pharmacol 52:35–38

    Article  PubMed  CAS  Google Scholar 

  62. Buehler EV (1965) Delayed contact hypersensitivity in the guinea pig. Arch Dermatol 91:171–177

    Article  PubMed  CAS  Google Scholar 

  63. Magnusson B, Kligman AM (1969) The identification of contact allergens by animal assay. The guinea pig maximization test. J Invest Dermatol 52:268–276

    PubMed  CAS  Google Scholar 

  64. Kimber I, Dearman RJ, Basketter DA, Ryan CA, Gerberick GF (2002) The local lymph node assay: past, present and future. Contact Dermatits 47:315–328

    Article  CAS  Google Scholar 

  65. Dean JH, Twerdok LE, Tice RR, Sailstad DM, Hattan DG, Stokes WS (2001) ICCVAM evaluation of the murine local lymph node assay. Conclusions and recommendations of an independent scientific peer review panel. Regul Toxicol Pharmacol 34:258–273

    Article  PubMed  CAS  Google Scholar 

  66. Api AM, Basketter DA, Cadby PA, Cano MF, Ellis G, Gerberick GF, Griem P, McNamee PM, Ryan CA, Safford R (2008) Dermal sensitization quantitative risk assessment (QRA) for fragrance ingredients. Regul Toxicol Pharmacol 52:3–23

    Article  PubMed  CAS  Google Scholar 

  67. Griem P, Goebel C, Scheffler H (2003) Proposal for a risk assessment methodology for skin sensitization based on sensitization potency data. Regul Toxicol Pharmacol 38:269–290

    Article  PubMed  CAS  Google Scholar 

  68. Schneider K, Akkan Z (2004) Quantitative relationship between the local lymph node assay and human skin sensitization assays. Regul Toxicol Pharmacol 39:245–255

    Article  PubMed  CAS  Google Scholar 

  69. Anderson C, Hehr A, Robbins R, Hasan R, Athar M, Mukhtar H, Elmets CA (1995) Metabolic requirements for induction of contact hypersensitivity to immunotoxic polyaromatic hydrocarbons. J Immunol 155:3530–3537

    PubMed  CAS  Google Scholar 

  70. van Och FM, Vandebriel RJ, Prinsen MK, De Jong WH, Slob W, van Loveren H (2001) Comparison of dose-responses of contact allergens using the guinea pig maximization test and the local lymph node assay. Toxicology 167:207–215

    Article  PubMed  Google Scholar 

  71. Yamano T, Shimizu M, Noda T (2005) Quantitative comparison of the results obtained by the multiple-dose guinea pig maximization test and the non-radioactive murine local lymph-node assay for various biocides. Toxicology 211:165–175

    Article  PubMed  CAS  Google Scholar 

  72. Kimber I, Basketter DA, Berthold K, Butler M, Garrigue JL, Lea L, Newsome C, Roggeband R, Steiling W, Stropp G, Waterman S, Wiemann C (2001) Skin sensitization testing in potency and risk assessment. Toxicol Sci 59:198–208

    Article  PubMed  CAS  Google Scholar 

  73. Devos SA, Van Der Valk PG (2002) Epicutaneous patch testing. Eur J Dermatol 12:506–513

    PubMed  Google Scholar 

  74. Nakada T, Hostynek JJ, Maibach HI (2000) Use tests: ROAT (repeated open application test)/PUT (provocative use test): an overview. Contact Dermatits 43:1–3

    Article  CAS  Google Scholar 

  75. Fischer LA, Voelund A, Andersen KE, Menne T, Johansen JD (2009) The dose-response relationship between the patch test and ROAT and the potential use for regulatory purposes. Contact Dermatits 61:201–208

    Article  CAS  Google Scholar 

  76. Moorman JE, Rudd RA, Johnson CA, King M, Minor P, Bailey C, Scalia MR, Akinbami LJ (2007) National surveillance for asthma―United States, 1980-2004. MMWR Surveill Summ 56:1–54

    PubMed  Google Scholar 

  77. Sennhauser FH, Braun-Fahrlander C, Wildhaber JH (2005) The burden of asthma in children: a European perspective. Paediatr Respir Rev 6:2–7

    Article  PubMed  Google Scholar 

  78. Petsonk EL (2002) Work-related asthma and implications for the general public. Environ Health Perspect 110(Suppl 4):569–572

    Article  PubMed  CAS  Google Scholar 

  79. Arts JH, Mommers C, de Heer C (2006) Dose-response relationships and threshold levels in skin and respiratory allergy. Crit Rev Toxicol 36:219–251

    Article  PubMed  CAS  Google Scholar 

  80. Merget R, Kulzer R, Dierkes-Globisch A, Breitstadt R, Gebler A, Kniffka A, Artelt S, Koenig HP, Alt F, Vormberg R, Baur X, Schultze-Werninghaus G (2000) Exposure-effect relationship of platinum salt allergy in a catalyst production plant: conclusions from a 5-year prospective cohort study. J Allergy Clin Immunol 105:364–370

    Article  PubMed  CAS  Google Scholar 

  81. Chung YJ, Copeland LB, Doerfler DL, Ward MD (2010) The relative allergenicity of Stachybotrys chartarum compared to house dust mite extracts in a mouse model. Inhal Toxicol 22:460–468

    Article  PubMed  CAS  Google Scholar 

  82. Sarlo K, Kirchner DB (2002) Occupational asthma and allergy in the detergent industry: new developments. Curr Opin Allergy Clin Immunol 2:97–101

    Article  PubMed  Google Scholar 

  83. Schweigert MK, Mackenzie DP, Sarlo K (2000) Occupational asthma and allergy associated with the use of enzymes in the detergent industry―a review of the epidemiology, toxicology and methods of prevention. Clin Exp Allergy 30:1511–1518

    Article  PubMed  CAS  Google Scholar 

  84. Bernstein DI, Cartier A, Cote J, Malo JL, Boulet LP, Wanner M, Milot J, L’Archeveque J, Trudeau C, Lummus Z (2002) Diisocyanate antigen-stimulated monocyte chemoattractant protein-1 synthesis has greater test efficiency than specific antibodies for identification of diisocyanate asthma. Am J Respir Crit Care Med 166:445–450

    Article  PubMed  Google Scholar 

  85. Bernstein JA (1996) Overview of diisocyanate occupational asthma. Toxicology 111:181–189

    Article  PubMed  CAS  Google Scholar 

  86. Cartier A, Grammer L, Malo JL, Lagier F, Ghezzo H, Harris K, Patterson R (1989) Specific serum antibodies against isocyanates: association with occupational asthma. J Allergy Clin Immunol 84:507–514

    Article  PubMed  CAS  Google Scholar 

  87. Grammer LC, Shaughnessy MA, Henderson J, Zeiss CR, Kavich DE, Collins MJ, Pecis KM, Kenamore BD (1993) A clinical and immunologic study of workers with trimellitic-anhydride-induced immunologic lung disease after transfer to low exposure jobs. Am Rev Respir Dis 148:54–57

    PubMed  CAS  Google Scholar 

  88. Grammer L, Shaughnessy M, Kenamore B (1998) Utility of antibody in identifying individuals who have or will develop anhydride-induced respiratory disease. Chest 114:1199–1202

    Article  PubMed  CAS  Google Scholar 

  89. Baur X (2003) Are we closer to developing threshold limit values for allergens in the workplace? Ann Allergy Asthma Immunol 90:11–18

    Article  PubMed  CAS  Google Scholar 

  90. Mapp CE, Boschetto P, Maestrelli P, Fabbri LM (2005) Occupational asthma. Am J Respir Crit Care Med 172:280–305

    Article  PubMed  Google Scholar 

  91. Heederik D, Houba R (2001) An exploratory quantitative risk assessment for high molecular weight sensitizers: wheat flour. Ann Occup Hyg 45:175–185

    PubMed  CAS  Google Scholar 

  92. Sarlo K (1994) Human health risk assessment: focus on enzymes. In: Cahn A (ed) Proceedings of the 3rd World conference on detergents. American Oil Chemists Society Press, Chicago, IL, pp 54–57

    Chapter  Google Scholar 

  93. Chung YJ, Coates NH, Viana ME, Copeland L, Vesper SJ, Selgrade MK, Ward MD (2005) Dose-dependent allergic responses to an extract of Penicillium chrysogenum in BALB/c mice. Toxicology 209:77–89

    Article  PubMed  CAS  Google Scholar 

  94. Ward MD, Chung YJ, Copeland LB, Doerfler DL (2010) A comparison of the allergic responses induced by Penicillium chrysogenum and house dust mite extracts in a mouse model. Indoor Air 20:380–391

    Article  PubMed  CAS  Google Scholar 

  95. Karol MH (1983) Concentration-dependent immunologic response to toluene diisocyanate (TDI) following inhalation exposure. Toxicol Appl Pharmacol 68:229–241

    Article  PubMed  CAS  Google Scholar 

  96. Instanes C, Ward MD, Hetland G (2006) The fungal biopesticide Metarhizium anisopliae has an adjuvant effect on the allergic response to ovalbumin in mice. Toxicol Lett 161:219–225

    Article  PubMed  CAS  Google Scholar 

  97. Farraj AK, Boykin E, Haykal-Coates N, Gavett SH, Doerfler D, Selgrade M (2007) Th2 cytokines in skin draining lymph nodes and serum IgE do not predict airway hypersensitivity to intranasal isocyanate exposure in mice. Toxicol Sci 100:99–108

    Article  PubMed  CAS  Google Scholar 

  98. Klink KJ, Meade BJ (2003) Dermal exposure to 3-amino-5-mercapto-1,2,4-triazole (AMT) induces sensitization and airway hyperreactivity in BALB/c mice. Toxicol Sci 75:89–98

    Article  PubMed  CAS  Google Scholar 

  99. Sailstad DM, Ward MD, Boykin EH, Selgrade MK (2003) A murine model for low molecular weight chemicals: differentiation of respiratory sensitizers (TMA) from contact sensitizers (DNFB). Toxicology 194:147–161

    Article  PubMed  CAS  Google Scholar 

  100. Yokota K, Johyama Y, Yamaguchi K, Takeshita T, Morimoto K (1999) Exposure-response relationships in rhinitis and conjunctivitis caused by methyltetrahydrophthalic anhydride. Int Arch Occup Environ Health 72:14–18

    Article  PubMed  CAS  Google Scholar 

  101. Baur X, Chen Z, Liebers V (1998) Exposure-response relationships of occupational inhalative allergens. Clin Exp Allergy 28:537–544

    Article  PubMed  CAS  Google Scholar 

  102. Pauluhn J, Mohr U (1994) Assessment of respiratory hypersensitivity in guinea-pigs sensitized to diphenylmethane-4,4′-diisocyanate (MDI) and challenged with MDI, acetylcholine or MDI-albumin conjugate. Toxicology 92:53–74

    Article  PubMed  CAS  Google Scholar 

  103. Botham PA, Rattray NJ, Woodcock DR, Walsh ST, Hext PM (1989) The induction of respiratory allergy in guinea-pigs following intradermal injection of trimellitic anhydride: a comparison with the response to 2,4-dinitrochlorobenzene. Toxicol Lett 47:25–39

    Article  PubMed  CAS  Google Scholar 

  104. Arts JH, Kuper CF, Spoor SM, Bloksma N (1998) Airway morphology and function of rats following dermal sensitization and respiratory challenge with low molecular weight chemicals. Toxicol Appl Pharmacol 152:66–76

    Article  PubMed  CAS  Google Scholar 

  105. Zhang XD, Fedan JS, Lewis DM, Siegel PD (2004) Asthmalike biphasic airway responses in Brown Norway rats sensitized by dermal exposure to dry trimellitic anhydride powder. J Allergy Clin Immunol 113:320–326

    Article  PubMed  CAS  Google Scholar 

  106. Arts JH, Muijser H, Appel MJ, Frieke Kuper C, Bessems JG, Woutersen RA (2004) Subacute (28-day) toxicity of furfural in Fischer 344 rats: a comparison of the oral and inhalation route. Food Chem Toxicol 42:1389–1399

    Article  PubMed  CAS  Google Scholar 

  107. Pollard KM, Hultman P, Kono DH (2010) Toxicology of autoimmune diseases. Chem Res Toxicol 23:455–466

    Article  PubMed  CAS  Google Scholar 

  108. Heindel J, Cooper GS, Germolec D, Selgrade M (1999) Linking environmental agents to autoimmune diseases. Environ Health Perspect 107(Suppl 5):659–813

    Article  PubMed  Google Scholar 

  109. Carneiro-Sampaio M, Coutinho A (2007) Tolerance and autoimmunity: lessons at the bedside of primary immunodeficiencies. Adv Immunol 95:51–82

    Article  PubMed  CAS  Google Scholar 

  110. Torgerson TR (2008) Immune dysregulation in primary immunodeficiency disorders. Immunol Allergy Clin North Am 28:315–327

    Article  PubMed  Google Scholar 

  111. Rose NR, Mackay IR (2006) The autoimmune diseases. Elsevier, St. Louis, MO

    Google Scholar 

  112. Noller KL, Blair PB, O’Brien PC, Melton LJ 3rd, Offord JR, Kaufman RH, Colton T (1988) Increased occurrence of autoimmune disease among women exposed in utero to diethylstilbestrol. Fertil Steril 49:1080–1082

    PubMed  CAS  Google Scholar 

  113. Ford CD, Johnson GH, Smith WG (1983) Natural killer cells in in utero diethylstilbesterol-exposed patients. Gynecol Oncol 16:400–404

    Article  PubMed  CAS  Google Scholar 

  114. Ways SC, Mortola JF, Zvaifler NJ, Weiss RJ, Yen SS (1987) Alterations in immune responsiveness in women exposed to diethylstilbestrol in utero. Fertil Steril 48:193–197

    PubMed  CAS  Google Scholar 

  115. Burke L, Segall-Blank M, Lorenzo C, Dynesius-Trentham R, Trentham D, Mortola JF (2001) Altered immune response in adult women exposed to diethylstilbestrol in utero. Am J Obstet Gynecol 185:78–81

    Article  PubMed  CAS  Google Scholar 

  116. Miller FW, Hess EV, Clauw DJ, Hertzman PA, Pincus T, Silver RM, Mayes MD, Varga J, Medsger TA Jr, Love LA (2000) Approaches for identifying and defining environmentally associated rheumatic disorders. Arthritis Rheum 43:243–249

    Article  PubMed  CAS  Google Scholar 

  117. Patterson R, Germolec D (2005) Toxic oil syndrome: review of immune aspects of the disease. J Immunotoxicol 2:51–58

    Article  PubMed  CAS  Google Scholar 

  118. Kaufman LD, Krupp LB (1995) Eosinophilia-myalgia syndrome, toxic-oil syndrome, and diffuse fasciitis with eosinophilia. Curr Opin Rheumatol 7:560–567

    Article  PubMed  CAS  Google Scholar 

  119. Back EE, Henning KJ, Kallenbach LR, Brix KA, Gunn RA, Melius JM (1993) Risk factors for developing eosinophilia myalgia syndrome among L-tryptophan users in New York. J Rheumatol 20:666–672

    PubMed  CAS  Google Scholar 

  120. Kamb ML, Murphy JJ, Jones JL, Caston JC, Nederlof K, Horney LF, Swygert LA, Falk H, Kilbourne EM (1992) Eosinophilia-myalgia syndrome in l-tryptophan-exposed patients. JAMA 267:77–82

    Article  PubMed  CAS  Google Scholar 

  121. Tabuenca JM (1981) Toxic-allergic syndrome caused by ingestion of rapeseed oil denatured with aniline. Lancet 2:567–568

    Article  PubMed  CAS  Google Scholar 

  122. Holladay SD (1999) Prenatal immunotoxicant exposure and postnatal autoimmune disease. Environ Health Perspect 107(Suppl 5):687–691

    Article  PubMed  CAS  Google Scholar 

  123. Holladay SD, Lindstrom P, Blaylock BL, Comment CE, Germolec DR, Heindell JJ, Luster MI (1991) Perinatal thymocyte antigen expression and postnatal immune development altered by gestational exposure to tetrachlorodibenzo-p-dioxin (TCDD). Teratology 44:385–393

    Article  PubMed  CAS  Google Scholar 

  124. Blaylock BL, Holladay SD, Comment CE, Heindel JJ, Luster MI (1992) Exposure to tetrachlorodibenzo-p-dioxin (TCDD) alters fetal thymocyte maturation. Toxicol Appl Pharmacol 112:207–213

    Article  PubMed  CAS  Google Scholar 

  125. Silverstone AE, Frazier DE, Fiore NC, Soults JA, Gasiewicz TA (1994) Dexamethasone, β-estradiol, and 2,3,7,8-tetrachlorodibenzo-p-dioxin elicit thymic atrophy through different cellular targets. Toxicol Appl Pharmacol 126:248–259

    Article  PubMed  CAS  Google Scholar 

  126. Mustafa A, Holladay SD, Goff M, Witonsky S, Kerr R, Weinstein DA, Karpuzoglu-Belgin E, Gogal RM Jr (2009) Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters postnatal T cell phenotypes and T cell function and exacerbates autoimmune lupus in 24-week-old SNF1 mice. Birth Defects Res A Clin Mol Teratol 85:828–836

    Article  PubMed  CAS  Google Scholar 

  127. Silverstone AE, Gavalchin J, Gasiewicz TA (1998) TCDD, DES, and estradiol potentiate a lupus-like autoimmune nephritis in NZB × SWR (SNF1) mice. Toxicologist 42:403

    Google Scholar 

  128. Smith DA, Germolec DR (2000) Developmental exposure to TCDD and mercuric chloride in autoimmune-prone MRL/lpr mice. Toxicologist 54:8

    Google Scholar 

  129. Mustafa A, Holladay SD, Goff M, Witonsky SG, Kerr R, Reilly CM, Sponenberg DP, Gogal RM Jr (2008) An enhanced postnatal autoimmune profile in 24 week-old C57BL/6 mice developmentally exposed to TCDD. Toxicol Appl Pharmacol 232:51–59

    Article  PubMed  CAS  Google Scholar 

  130. Germolec DR (2005) Autoimmune diseases, animal models. In: Vohr HW (ed) Encyclopedic reference of immunotoxicology. Springer, Berlin, Germany, pp 75–79

    Chapter  Google Scholar 

  131. Pieters R, Ezendam J, Bleumink R, Bol M, Nierkens S (2002) Predictive testing for autoimmunity. Toxicol Lett 127:83–91

    Article  PubMed  CAS  Google Scholar 

  132. NRC (1983) Risk assessment in the federal government: managing the process, Committee on the institutional means for assessment of risks to public health, Commission on life sciences. National Research Council, Washington DC, pp 1–192

    Google Scholar 

  133. NRC (1994) Science and judgment in risk assessment, Committee on risk assessment of hazardous air pollutants, Board on environmental studies and toxicology, Commission on life sciences. National Research Council, Washington DC, pp 1–672

    Google Scholar 

  134. WHO (1999) Principles for the assessment of risks to human health from exposure to chemicals, IPCS environmental health criteria 210. International programme on chemical safety. World Health Organization, Geneva, Switzerland

    Google Scholar 

  135. Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58:295–300

    PubMed  CAS  Google Scholar 

  136. Weed DL (2005) Weight of evidence: a review of concept and methods. Risk Analysis 25:1545–1557

    Article  PubMed  Google Scholar 

  137. Luster MI, Germolec DR, Parks C, Blanciforti L, Kashon M, Luebke RW (2005) Associating changes in the immune system with clinical diseases for interpretation in risk assessment. In: Tryphonas H, Fournier M, Blakley BR, Smits JE, Brousseau P (eds) Investigative immunotoxicology. Taylor & Francis, New York, NY, pp 165–182

    Chapter  Google Scholar 

  138. Dietert RR, Dietert JM (2007) Early-life immune insult and developmental immunotoxicity (DIT)-associated diseases: potential of herbal- and fungal-derived medicinals. Curr Med Chem 14:1075–1085

    Article  PubMed  CAS  Google Scholar 

  139. Huang H, Patel D, Manton K (2005) The immune system in aging: roles of cytokines, T cells and NK cells. Front Biosci 10:192–215

    Article  PubMed  CAS  Google Scholar 

  140. U.S. EPA (2002) A review of the reference dose and reference concentration processes. Report. Risk Assessment Forum, Washington, DC, pp 1–192

    Google Scholar 

  141. WHO (2009) Principles for modelling dose-response for the risk assessment of chemicals, IPCS environmental health criteria 239. International programme on chemical safety. World Health Organization, Geneva, Switzerland

    Google Scholar 

  142. U.S. EPA (1995) Use of the benchmark dose approach in health risk assessment. Report. Risk Assessment Forum, Washington DC, pp 1–93

    Google Scholar 

  143. U.S. EPA (2000) Benchmark dose technical guidance document. External review draft. Report. Risk Assessment Forum, Washington DC, pp 1–96

    Google Scholar 

  144. WHO (2000) Human exposure assessment, IPCS environmental health criteria 214. International programme on chemical safety. World Health Organization, Geneva, Switzerland

    Google Scholar 

  145. U.S. EPA (1992) Guidelines for exposure assessment. Report. Risk Assessment Forum, Washington DC, pp 1–126

    Google Scholar 

  146. U.S. EPA (2005) Guidance on selecting age groups for monitoring and assessing childhood exposures to environmental contaminants. Report. Risk Assessment Forum, Washington DC, pp 1–50

    Google Scholar 

  147. U.S. EPA (1998) Health effects test guidelines: OPPTS 870.7800 immunotoxicity. Report. Office of Prevention, Pesticides and Toxic Substances, Washington DC

    Google Scholar 

  148. Selgrade MK, Gilmour MI (2006) Immunotoxicology of inhaled compounds―assessing risks of local immune suppression and hypersensitivity. J Toxicol Environ Health A 69:827–844

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research program of the National Institutes of Health, National Institute of Environmental Health Sciences. The findings and conclusions in this report represent the opinions of the authors and do not represent, and should not be construed to represent, statements, opinions, or conclusions of the National Toxicology Program, NIEHS, NIH, the Environmental Protection Agency, or the United States Government. This chapter has been reviewed by the Environmental Protection Agency’s Office of Research and Development and approved for publication. We thank Dr. Andrew Hotchkiss and Dr. David Lehmann for their thoughtful review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew A. Rooney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Rooney, A.A., Luebke, R.W., Selgrade, M.K., Germolec, D.R. (2012). Immunotoxicology and Its Application in Risk Assessment. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 101. Springer, Basel. https://doi.org/10.1007/978-3-7643-8340-4_9

Download citation

Publish with us

Policies and ethics