Exposure to Polycyclic Aromatic Hydrocarbons: Bulky DNA Adducts and Cellular Responses

  • Frank Henkler
  • Kristin Stolpmann
  • Andreas Luch
Part of the Experientia Supplementum book series (EXS, volume 101)


Environmental and dietary carcinogens such as polycyclic aromatic hydrocarbons (PAHs) have been intensively studied for decades. Although the genotoxicity of these compounds is well characterized (i.e., formation of bulky PAH–DNA adducts), molecular details on the DNA damage response triggered by PAHs in cells and tissues remain to be clarified. The conversion of hazardous PAHs into carcinogenic intermediates depends on enzyme-catalyzed biotransformation. Certain cytochrome P450-dependent monooxygenases (CYPs) play a pivotal role in PAH metabolism. In particular, CYP1A1 and 1B1 catalyze oxidation of PAHs toward primary epoxide species that can further be converted into multiple follow-up products, both nonenzymatically and enzymatically. Distinct functions between these major CYP enzymes have only been appreciated since transgenic animal models had been derived. Electrophilic PAH metabolites are capable of forming stable DNA adducts or to promote depurination at damaged nucleotide sites. During the following DNA replication cycle, bulky PAH–DNA adducts may be converted into mutations, thereby affecting hot spot sites in regulatory important genes such as Ras, p53, and others. Depending on the degree of DNA distortion and cell cycle progression, PAH–DNA adducts trigger nucleotide excision repair (NER) and various DNA damage responses that might include TP53-dependent apoptosis in certain cell types. In fact, cellular responses to bulky PAH–DNA damage are complex because distinct signaling branches such as ATM/ATR, NER, TP53, but also MAP kinases, interact and cooperate to determine the overall outcome to cellular injuries initiated by PAH–DNA adducts. Further, PAHs and other xenobiotics can also confer DNA damage via an alternative route of metabolic activation, which leads to the generation of PAH semiquinone radicals and reactive oxygen species (ROS). One-electron oxidations mediated by peroxidases or other enzymes can result in PAH radical cations that mainly form unstable DNA adducts subjected to depurination. In addition, generation of ROS can also trigger multiple cellular signaling pathways not directly related to mutagenic or cytotoxic effects, including those mediated by NFκB, SAPK/JNK, and p38. In recent years, it became clear that PAHs may also be involved in inflammatory diseases, autoimmune disorders, or atherosclerosis. Further research is under way to better characterize the significance of such newly recognized systemic effects of PAHs and to reconsider risk assessment for human health.


Apoptosis Diol-epoxide pathway DNA adducts DNA repair Growth arrest Inflammation Oxidative stress PAH radical cations Proliferation 


  1. 1.
    Harvey RG (1991) Polycyclic aromatic hydrocarbons: chemistry and carcinogenicity. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Luch A, Baird WM (2010) Carcinogenic polycyclic aromatic hydrocarbons. In: McQueen CA (ed) Comprehensive toxicology, vol 14, 2nd edn. Academic, Oxford, pp 85–123CrossRefGoogle Scholar
  3. 3.
    Luch A (2009) On the impact of the molecule structure in chemical carcinogenesis. In: Luch A (ed) Molecular, clinical and environmental toxicology, vol 1. Birkhäuser, Basel, pp 151–179CrossRefGoogle Scholar
  4. 4.
    Cogliano VJ, Baan RA, Straif K, Grosse Y, Secretan B, El Ghissassi F (2008) Use of mechanistic data in IARC evaluations. Environ Mol Mutagen 49:100–109PubMedCrossRefGoogle Scholar
  5. 5.
    Goetz ME, Luch A (2008) Reactive species: a cell damaging rout assisting to chemical carcinogens. Cancer Lett 266:73–83PubMedCrossRefGoogle Scholar
  6. 6.
    Cavalieri EL, Rogan EG (1995) Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons. Xenobiotica 25:677–688PubMedCrossRefGoogle Scholar
  7. 7.
    Melendez-Colon VJ, Luch A, Seidel A, Baird WM (2000) Formation of stable DNA adducts and apurinic sites upon metabolic activation of bay and fjord region polycyclic aromatic hydrocarbons in human cell cultures. Chem Res Toxicol 13:10–17PubMedCrossRefGoogle Scholar
  8. 8.
    RamaKrishna NV, Gao F, Padmavathi NS, Cavalieri EL, Rogan EG, Cerny RL, Gross ML (1992) Model adducts of benzo[a]pyrene and nucleosides formed from its radical cation and diol epoxide. Chem Res Toxicol 5:293–302PubMedCrossRefGoogle Scholar
  9. 9.
    Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH (2008) The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr 18:207–250PubMedCrossRefGoogle Scholar
  10. 10.
    Puga A, Ma C, Marlowe JL (2009) The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochem Pharmacol 77:713–722PubMedCrossRefGoogle Scholar
  11. 11.
    Ding X, Kaminsky LS (2003) Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 43:149–173PubMedCrossRefGoogle Scholar
  12. 12.
    Nebert DW, Dalton TP (2006) The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer 6:947–960PubMedCrossRefGoogle Scholar
  13. 13.
    Taylor RT, Wang F, Hsu EL, Hankinson O (2009) Roles of coactivator proteins in dioxin induction of CYP1A1 and CYP1B1 in human breast cancer cells. Toxicol Sci 107:1–8PubMedCrossRefGoogle Scholar
  14. 14.
    Buters JT, Sakai S, Richter T, Pineau T, Alexander DL, Savas U, Doehmer J, Ward JM, Jefcoate CR, Gonzalez FJ (1999) Cytochrome P450 CYP1B1 determines susceptibility to 7,12-dimethylbenz[a]anthracene-induced lymphomas. Proc Natl Acad Sci USA 96:1977–1982PubMedCrossRefGoogle Scholar
  15. 15.
    Buters JT, Mahadevan B, Quintanilla-Martinez L, Gonzalez FJ, Greim H, Baird WM, Luch A (2002) Cytochrome P450 1B1 determines susceptibility to dibenzo[a,l]pyrene-induced tumor formation. Chem Res Toxicol 15:1127–1135PubMedCrossRefGoogle Scholar
  16. 16.
    Uno S, Dalton TP, Derkenne S, Curran CP, Miller ML, Shertzer HG, Nebert DW (2004) Oral exposure to benzo[a]pyrene in the mouse: detoxication by inducible cytochrome P450 is more important than metabolic activation. Mol Pharmacol 65:1225–1237PubMedCrossRefGoogle Scholar
  17. 17.
    Uno S, Dalton TP, Dragin N, Curran CP, Derkenne S, Miller ML, Shertzer HG, Gonzalez FJ, Nebert DW (2006) Oral benzo[a]pyrene in Cyp1 knockout mouse lines: CYP1A1 important in detoxication, CYP1B1 metabolism required for immune damage independent of total-body burden and clearance rate. Mol Pharmacol 69:1103–1114PubMedCrossRefGoogle Scholar
  18. 18.
    Chang R, Levin W, Wood AW, Lehr RE, Kumar S, Yagi H, Yerina DM, Conney AH (1982) Tumorigenicity of bay-region diol-epoxides and other benzo-ring derivatives of dibenzo[a,h]pyrene and dibenzo[a, i]pyrene on mouse skin and in newborn mice. Cancer Res 42:25–29PubMedGoogle Scholar
  19. 19.
    Busby WF Jr, Smith H, Crespi CL, Penman BW (1995) Mutagenicity of benzo[a]pyrene and dibenzopyrenes in the Salmonella typhimurium TM677 and the MCL-5 human cell forward mutation assays. Mutat Res 342:9–16PubMedCrossRefGoogle Scholar
  20. 20.
    Luch A, Seidel A, Glatt H, Platt KL (1997) Metabolic activation of the (+)-S,S- and (–)-R,R-enantiomers of trans-11,12-dihydroxy-11,12-dihydrodibenzo[a, l]pyrene: stereoselectivity, DNA adduct formation, and mutagenicity in Chinese hamster V79 cells. Chem Res Toxicol 10:1161–1170PubMedCrossRefGoogle Scholar
  21. 21.
    Luch A, Coffing SL, Tang YM, Schneider A, Soballa V, Greim H, Jefcoate CR, Seidel A, Greenlee WF, Baird WM, Doehmer J (1998) Stable expression of human cytochrome P450 1B1 in V79 Chinese hamster cells and metabolically catalyzed DNA adduct formation of dibenzo[a,l]pyrene. Chem Res Toxicol 11:686–695PubMedCrossRefGoogle Scholar
  22. 22.
    Luch A, Schober W, Soballa VJ, Raab G, Greim H, Jacob J, Doehmer J, Seidel A (1999) Metabolic activation of dibenzo[a,l]pyrene by human cytochrome P450 1A1 and P450 1B1 expressed in V79 Chinese hamster cells. Chem Res Toxicol 12:353–364PubMedCrossRefGoogle Scholar
  23. 23.
    Schober W, Luch A, Soballa VJ, Raab G, Stegemann JJ, Doehmer J, Jacob J, Seidel A (2006) On the species-specific biotransformation of dibenzo[a,l]pyrene. Chem Biol Interact 161: 37–48PubMedCrossRefGoogle Scholar
  24. 24.
    Luch A, Baird WM (2005) Metabolic activation and detoxification of polycyclic aromatic hydrocarbons. In: Luch A (ed) The carcinogenic effects of polycyclic aromatic hydrocarbons. Imperial College Press, London, pp 19–95CrossRefGoogle Scholar
  25. 25.
    Luch A (2005) Polycyclic aromatic hydrocarbon-induced carcinogenesis—An integrated view. In: Luch A (ed) The carcinogenic effects of polycyclic aromatic hydrocarbons. Imperial College Press, London, pp 381–454Google Scholar
  26. 26.
    Jerina DM, Chadha A, Cheh AM, Schurdak ME, Wood AW, Sayer JM (1991) Covalent bonding of bay-region diol epoxides to nucleic acids. Adv Exp Med Biol 283:533–553PubMedCrossRefGoogle Scholar
  27. 27.
    Geacintov NE, Cosman M, Hingerty BE, Amin S, Broyde S, Patel DJ (1997) NMR solution structures of stereomeric polycyclic aromatic carcinogen-DNA adducts: principles, patterns and diversity. Chem Res Toxicol 10:111–146PubMedCrossRefGoogle Scholar
  28. 28.
    Dipple A, Khan QA, Page JE, Pontén I, Szeliga J (1999) DNA reactions, mutagenic action and stealth properties of polycyclic aromatic hydrocarbon carcinogens. Int J Oncol 14:103–111PubMedGoogle Scholar
  29. 29.
    Koreeda M, Moore PD, Wislocki PG, Levin W, Yagi H, Jerina DM (1978) Binding of benzo[a]pyrene 7,8-diol-9,10-epoxides to DNA, RNA, and protein of mouse skin occurs with high stereoselectivity. Science 199:778–781PubMedCrossRefGoogle Scholar
  30. 30.
    Dipple A (1994) Reactions of polycyclic aromatic hydrocarbons with DNA. In: Hemminki K, Dipple A, Shuker DEG, Kadlubar FF, Segerbäck D, Bartsch H (eds) DNA adducts: identification and biological significance, vol 125. International Agency for Research on Cancer, IARC Sci Publications, Lyon, France, pp 107–129Google Scholar
  31. 31.
    Szeliga J, Dipple A (1998) DNA adduct formation by polycyclic aromatic hydrocarbon dihydrodiol epoxides. Chem Res Toxicol 11:1–11PubMedCrossRefGoogle Scholar
  32. 32.
    Yang W (2005) Portraits of a Y-family DNA polymerase. FEBS Lett 579:868–872PubMedCrossRefGoogle Scholar
  33. 33.
    Ohmori H, Friedberg EC, Fuchs RP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW, Livneh Z, Nohmi T, Prakash L, Todo T, Walker GC, Wang Z, Woodgate R (2001) The Y-family of DNA polymerases. Mol Cell 8:7–8PubMedCrossRefGoogle Scholar
  34. 34.
    Sweasy JB, Lauper JM, Eckert KA (2006) DNA polymerases and human diseases. Radiat Res 166:693–714PubMedCrossRefGoogle Scholar
  35. 35.
    Guo C, Kosarek-Stancel JN, Tang TS, Friedberg EC (2009) Y-family of DNA polymerases in mammalian cells. Cell Mol Life Sci 66:2363–2381PubMedCrossRefGoogle Scholar
  36. 36.
    Cruet-Henneguart S, Gallagher K, Sokòl AM, Villalan S, Prendergast AM, Carty MP (2010) DNA polymerase η, a key protein in translesion synthesis in human cells. Subcell Biochem 50:189–209CrossRefGoogle Scholar
  37. 37.
    Broyde S, Wang L, Rechkoblit O, Geacintov NE, Patel DJ (2008) Lesion processing: high-fidelity versus lesion-bypass DNA polymerases. Trends Biochem Sci 33:209–219PubMedCrossRefGoogle Scholar
  38. 38.
    Ling H, Sayer JM, Plosky BS, Yagi H, Boudsocq F, Woodgate R, Jerina DM, Yang W (2004) Crystal structure of a benzo[a]pyrene diol epoxide adduct in a ternary complex with a DNA polymerase. Proc Natl Acad Sci USA 101:2265–2269PubMedCrossRefGoogle Scholar
  39. 39.
    Bauer J, Xing G, Yagi H, Sayer JM, Jerina DM, Ling H (2007) A structural gap in Dpo4 supports mutagenic bypass of a major benzo[a]pyrene dG adduct in DNA through template misalignment. Proc Natl Acad Sci USA 104:14905–14910PubMedCrossRefGoogle Scholar
  40. 40.
    Sills RC, Boorman GA, Neal JE, Hong HL, Devereux TR (1999) Mutations in ras genes in experimental tumours of rodents. IARC Sci Publ 146:55–86PubMedGoogle Scholar
  41. 41.
    Denissenko MF, Pao A, Tang M, Pfeifer GP (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in p53. Science 274:430–432PubMedCrossRefGoogle Scholar
  42. 42.
    Denissenko MF, Chen JX, Tang MS, Pfeifer GP (1997) Cytosine methylation determines hot spots of DNA damage in the human p53 gene. Proc Natl Acad Sci USA 94:3893–3898PubMedCrossRefGoogle Scholar
  43. 43.
    Hussain SP, Amstad P, Raja K, Sawyer M, Hofseth L, Shields PG, Hewer A, Phillips DH, Ryberg D, Haugen A, Harris CC (2001) Mutability of p53 hotspot codons to benzo[a]pyrene diol epoxide (BPDE) and the frequency of p53 mutations in nontumorous human lung. Cancer Res 61:6350–6355PubMedGoogle Scholar
  44. 44.
    DeMarini DM, Landi S, Tian D, Hanley NM, Li X, Hu F, Roop BC, Mass MJ, Keohavong P, Gao W, Olivier M, Hainaut P, Mumford JL (2001) Lung tumor KRAS and TP53 mutations in nonsmokers reflect exposure to PAH-rich coal combustion emissions. Cancer Res 61:6679–6681PubMedGoogle Scholar
  45. 45.
    Park JH, Troxel AB, Harvey RG, Penning TM (2006) Polycyclic aromatic hydrocarbon (PAH) o-quinones produced by the aldo-keto-reductases (AKRs) generate abasic sites, oxidized pyrimidines, and 8-oxo-dGua via reactive oxygen species. Chem Res Toxicol 19:719–728PubMedCrossRefGoogle Scholar
  46. 46.
    Ames BN (1989) Endogenous DNA damage as related to cancer and aging. Mutat Res 214:41–46PubMedCrossRefGoogle Scholar
  47. 47.
    Esterbauer H, Eckl P, Ortner A (1990) Possible mutagens derived from lipids and lipid precursors. Mutat Res Rev Genet Toxicol 238:223–233CrossRefGoogle Scholar
  48. 48.
    Lovell MA, Markesbery WR (2007) Oxidative DNA damage in mild cognitive impairment and early Alzheimer’s disease. J Neurosci Res 85:3036–3040PubMedCrossRefGoogle Scholar
  49. 49.
    Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002) Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 32:1102–1115PubMedCrossRefGoogle Scholar
  50. 50.
    Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17–29PubMedGoogle Scholar
  51. 51.
    Lovell MA, Markesbery WR (2007) Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res 35:7497–7504PubMedCrossRefGoogle Scholar
  52. 52.
    Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21:361–370PubMedCrossRefGoogle Scholar
  53. 53.
    Wang Y (2008) Bulky DNA lesions induced by reactive oxygen species. Chem Res Toxicol 21:276–281PubMedCrossRefGoogle Scholar
  54. 54.
    Richter C (1992) Reactive oxygen and DNA damage in mitochondria. Mutat Res 275:249–255PubMedCrossRefGoogle Scholar
  55. 55.
    Penning TM, Burczynski ME, Hung CF, McCoull K, Palackal NT, Tsuruda LS (1999) Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox active o-quinones. Chem Res Toxicol 12:1–18PubMedCrossRefGoogle Scholar
  56. 56.
    Breen AP, Murphy JA (1995) Reactions of oxyl radicals with DNA. Free Radic Biol Med 18:1033–1077PubMedCrossRefGoogle Scholar
  57. 57.
    Shibutani S, Takeshita M, Grollman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349:431–434PubMedCrossRefGoogle Scholar
  58. 58.
    Hussain SP, Harris CC (1998) Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes. Cancer Res 58:4023–4037PubMedGoogle Scholar
  59. 59.
    Ambs S, Bennett WP, Merriam WG, Ogunfusika MO, Oser SM, Harrington AM, Shields PG, Felley-Bosco E, Hussain SP, Harris CC (1999) Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer. J Natl Cancer Inst 91:86–88PubMedCrossRefGoogle Scholar
  60. 60.
    Feig DI, Sowers LC, Loeb LA (1994) Reverse chemical mutagenesis: identification of the mutagenic lesion resulting from reactive oxygen species-mediated damage to DNA. Proc Natl Acad Sci USA 91:6609–6613PubMedCrossRefGoogle Scholar
  61. 61.
    Wang D, Kreutzer DA, Essigmann JM (1998) Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat Res 400:99–115PubMedCrossRefGoogle Scholar
  62. 62.
    Lorentzen RJ, Caspary WJ, Lesko SA, Ts’o PO (1975) The autooxidation of 6-hydroxybenzo[a]pyrene and 6-oxobenzo[a]pyrene radical, reactive metabolites of benzo[a]pyrene. Biochemistry 14:3970–3977CrossRefGoogle Scholar
  63. 63.
    Lorentzen RJ, Ts’o PO (1977) Benzo[a]yrenedione/benzo[a]pyrenediol oxidation-reduction couples and the generation of reactive reduced molecular oxygen. Biochemistry 16: 1467–1473PubMedCrossRefGoogle Scholar
  64. 64.
    Jin Y, Penning TM (2007) Aldo-keto reductases and bioactivation/detoxication. Annu Rev Pharmacol Toxicol 47:263–296PubMedCrossRefGoogle Scholar
  65. 65.
    Penning TM (1993) Dihydrodiol dehydrogenase and its role in polycyclic aromatic hydrocarbon metabolism. Chem Biol Interact 89:1–34PubMedCrossRefGoogle Scholar
  66. 66.
    Burczynski ME, Lin HK, Penning TM (1999) Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAHs), electrophiles, and oxidative stress: implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. Cancer Res 59:607–614PubMedGoogle Scholar
  67. 67.
    Cavalieri EL, Rogan EG (1992) The approach to understanding aromatic hydrocarbon carcinogenesis. The central role of radical cations in metabolic activation. Pharmacol Ther 55:183–199PubMedCrossRefGoogle Scholar
  68. 68.
    Cavalieri EL, Rogan EG (1996) The primary role of apurinic sites in tumor initiation. Polycycl Aromat Compds 10:251–258CrossRefGoogle Scholar
  69. 69.
    Chakravarti D, Venugopal D, Mailander PC, Meza JL, Higginbotham S, Cavalieri EL, Rogan EG (2008) The role of polycyclic aromatic hydrocarbon-DNA adducts in inducing mutations in mouse skin. Mutat Res 649:161–178PubMedCrossRefGoogle Scholar
  70. 70.
    Melendez-Colon VJ, Smith CA, Seidel A, Luch A, Platt KL, Baird WM (1997) Formation of stable adducts and absence of depurinating DNA adducts in cells and DNA treated with the potent carcinogen dibenzo[a,l]pyrene or its diol epoxides. Proc Natl Acad Sci USA 94: 13542–13547PubMedCrossRefGoogle Scholar
  71. 71.
    Melendez-Colon VJ, Luch A, Seidel A, Baird WM (1999) Comparison of cytochrome P450- and peroxidase-dependent metabolic activation of the potent carcinogen dibenzo[a,l]pyrene in human cell lines: formation of stable DNA adducts and absence of a detectable increase in apurinic sites. Cancer Res 59:1412–1416PubMedGoogle Scholar
  72. 72.
    Melendez-Colon VJ, Luch A, Seidel A, Baird WM (1999) Cancer initiation by polycyclic aromatic hydrocarbons results from formation of stable DNA adducts rather than apurinic sites. Carcinogenesis 20:1885–1891PubMedCrossRefGoogle Scholar
  73. 73.
    Hecht SS, Amin S, Melikian AA, Lavoie EJ, Hoffmann D (1985) Effects of methyl and fluorine substitutions on the metabolic activation and tumorigenicity of polycyclic aromatic hydrocarbons. In: Harvey RG (ed) Polycyclic hydrocarbons and carcinogenesis, vol 283, ACS symposium series. American Chemical Society, Washington, DC, pp 85–105CrossRefGoogle Scholar
  74. 74.
    Hecht SS, Radok L, Amin S, Huie K, Melikian AA, Hoffmann D, Pataki HRG (1985) Tumorigenicity of 5-methylchrysene dihydrodiols and dihydrodiol epoxides in newborn mice and on mouse skin. Cancer Res 45:1449–1452PubMedGoogle Scholar
  75. 75.
    Flesher JW, Sydnor KL (1973) Possible role of 6-hydroxymethylbenzo[a]pyrene as a proximate carcinogen of benzo[a]pyrene and 6-methylbenzo[a]pyrene. Int J Cancer 11: 433–437PubMedCrossRefGoogle Scholar
  76. 76.
    Flesher JW, Horn J, Lehner AF (1997) 6-Sulfooxymethylbenzo[a]pyrene is an ultimate electrophilic and carcinogenic form of the intermediary metabolite 6-hydroxymethylbenzo- [a]pyrene. Biochem Biophys Res Commun 234:554–558PubMedCrossRefGoogle Scholar
  77. 77.
    Surh YJ, Miller JA (1994) Roles of electrophilic sulfuric acid metabolites in mutagenesis and carcinogenesis by some polynuclear aromatic hydrocarbons. Chem Biol Interact 92:351–362PubMedCrossRefGoogle Scholar
  78. 78.
    Glatt H (2000) Sulfotransferases in the bioactivation of xenobiotics. Chem Biol Interact 129:141–170PubMedCrossRefGoogle Scholar
  79. 79.
    Glatt H, Boeing H, Engelke CE, Ma L, Kuhlow A, Pabel U, Pomplun D, Teubner W, Meinl W (2001) Human cytosolic sulphotransferases: genetics, characteristics, toxicological aspects. Mutat Res 482:27–40PubMedCrossRefGoogle Scholar
  80. 80.
    Surh YJ, Blomquist JC, Miller JA (1991) Activation of 1-hydroxymethylpyrene to an electrophilic and mutagenic metabolite by rat hepatic sulfotransferase activity. Adv Exp Med Biol 283:383–391PubMedCrossRefGoogle Scholar
  81. 81.
    Miller JA, Surh YJ, Liem A, Miller EC (1991) Electrophilic sulfuric acid ester metabolites of hydroxy-methyl aromatic hydrocarbons as precursors of hepatic benzylic DNA adducts in vivo. Adv Exp Med Biol 283:555–567PubMedCrossRefGoogle Scholar
  82. 82.
    Harris CC (1996) p53 Tumor suppressor gene: at the crossroad of molecular carcinogenesis, molecular epidemiology and cancer risk assessment. Environ Health Perspect 104:435–439PubMedGoogle Scholar
  83. 83.
    Hoeijmakers JHJ (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374PubMedCrossRefGoogle Scholar
  84. 84.
    Olivier M, Hussain SP, Caron de Fromentel C, Harris CC (2004) TP53 mutation spectra and load: a tool for generating hypothesis on the etiology of cancer. IARC Sci Publ 157:247–270PubMedGoogle Scholar
  85. 85.
    Luch A (2005) Nature and nurture—lessons from chemical carcinogenesis. Nat Rev Cancer 5:113–125PubMedCrossRefGoogle Scholar
  86. 86.
    Luch A (2006) The mode of action of organic carcinogens on cellular structures. EXS 96:65–95PubMedGoogle Scholar
  87. 87.
    Luch A (2002) Cell cycle control and cell division: implications for chemically induced carcinogenesis. ChemBioChem 3:506–516PubMedCrossRefGoogle Scholar
  88. 88.
    Feng Z, Hu W, Chasin LA, Tang MS (2003) Effects of genomic context and chromatin structure of transcription-coupled and global genomic repair in mammalian cells. Nucleic Acids Res 31:5897–5906PubMedCrossRefGoogle Scholar
  89. 89.
    Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440–450PubMedCrossRefGoogle Scholar
  90. 90.
    Marie C, Maitre A, Douki T, Gateau M, Tarantini A, Guiraud P, Favier A, Ravanat JL (2008) Influence of the metabolic properties of human cells on the kinetic of formation of the major benzo[a]pyrene DNA adducts. J Appl Toxicol 28:579–590PubMedCrossRefGoogle Scholar
  91. 91.
    Boysen G, Hecht SS (2003) Analysis of DNA and protein adducts of benzo[a]pyrene in human tissues using structure-specific methods. Mutat Res 543:17–30PubMedCrossRefGoogle Scholar
  92. 92.
    Gyorffy E, Anna L, Gyori Z, Segesdi J, Minárovits J, Soltész I, Kostic S, Csekeo A, Poirier MC, Schoket B (2004) DNA adducts in tumour, normal peripheral lung and bronchus, and peripheral blood lymphocytes from smoking and non-smoking lung cancer patients: correlations between tissues and detection by 32P-postlabelling and immunoassay. Carcinogenesis 25:1201–1209PubMedCrossRefGoogle Scholar
  93. 93.
    Brinkmann J, Hutzler C, Trappe S, Stolpmann K, Bock U, Liebsch M, Henkler F, Luch A (2010) Comparative studies on the metabolism of benzo[a]pyrene in keratinocytes, in vitro skin models and human skin ex vivo—metabolite patterns as indicator for the metabolic capacity of skin equivalents? Skin-In-Vitro 2010, DECHEMA Conference, Frankfurt/Main, Germany, 8–9 Jun 2010, P11Google Scholar
  94. 94.
    Friedberg EC (2001) How nucleotide excision repair protects against cancer. Nat Rev Cancer 1:22–33PubMedCrossRefGoogle Scholar
  95. 95.
    Friedberg EC (2003) DNA damage and repair. Nature 421:436–440PubMedCrossRefGoogle Scholar
  96. 96.
    Camenisch U, Naegeli H (2009) Role of DNA repair in the protection against genotoxic stress. In: Luch A (ed) Molecular, clinical and environmental toxicology, vol 1. Birkhäuser, Basel, pp 111–150CrossRefGoogle Scholar
  97. 97.
    Naegeli H, Geacintov NE (2005) Mechanisms of repair of polycyclic aromatic hydrocarbon-induced DNA damage. In: Luch A (ed) The carcinogenic effects of polycyclic aromatic hydrocarbons. Imperial College Press, London, pp 211–258CrossRefGoogle Scholar
  98. 98.
    Geacintov NE, Broyde S, Buterin T, Naegeli H, Wu M, Yan S, Patel DJ (2002) Thermodynamic and structural factors in the removal of bulky DNA adducts by the nucleotide excision repair machinery. Biopolymers 65:202–210PubMedCrossRefGoogle Scholar
  99. 99.
    Shuck SC, Short EA, Turchi JJ (2008) Eukaryotic nucleotide excision repair, from understanding mechanisms to influencing biology. Cell Res 18:64–72PubMedCrossRefGoogle Scholar
  100. 100.
    Hess MT, Gunz D, Luneva N, Geacintov NE, Naegeli H (1997) Base pair conformation-dependent excision of benzo[a]pyrene diol epoxide-guanine adducts by human nucleotide excision repair enzymes. Mol Cell Biol 17:7069–7076PubMedGoogle Scholar
  101. 101.
    Buterin T, Hess MT, Luneva N, Geacintov NE, Amin S, Kroth H, Seidel A, Naegeli H (2000) Unrepaired fjord region polycyclic aromatic hydrocarbon-DNA adducts in ras codon 61 mutational hot spots. Cancer Res 60:1849–1856PubMedGoogle Scholar
  102. 102.
    Dreij K, Seidel A, Jernström B (2005) Differential removal of DNA adducts derived from anti-diol epoxides of dibenzo[a,l]pyrene and benzo[a]pyrene in human cells. Chem Res Toxicol 18:655–664PubMedCrossRefGoogle Scholar
  103. 103.
    Cai Y, Kropachev K, Xu R, Tang Y, Kolbanovskii M, Kolbanovskii A, Amin S, Patel DJ, Broyde S, Geacintov NE (2010) Distant neighbor base sequence context effects in human nucleotide excision repair of a benzo[a]pyrene-derived DNA lesion. J Mol Biol 399:397–409PubMedCrossRefGoogle Scholar
  104. 104.
    Cai Y, Patel DJ, Broyde S, Geacintov NE (2010) Base sequence context effects on nucleotide excision repair. J Nucleic Acids 2010:174252PubMedGoogle Scholar
  105. 105.
    Lagerwerf S, Vrouwe MG, Overmeer RM, Fousteri MI, Mullenders LHF (2011) DNA damage response and transcription. DNA Repair 10:743–750PubMedCrossRefGoogle Scholar
  106. 106.
    Fousteri M, Mullenders LHF (2008) Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res 18:73–84PubMedCrossRefGoogle Scholar
  107. 107.
    Wittschieben BØ, Wood RD (2003) DDB complexities. DNA Repair 2:1065–1069PubMedCrossRefGoogle Scholar
  108. 108.
    Wittschieben BØ, Iwai S, Wood RD (2005) DDB1-DDB2 (xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA. J Biol Chem 280:39982–39989PubMedCrossRefGoogle Scholar
  109. 109.
    Mitra S, Izumi T, Boldogh I, Bhakat KK, Hill JW, Hazra TK (2002) Choreography of oxidative damage repair in mammalian genomes. Free Radic Biol Med 33:15–28PubMedCrossRefGoogle Scholar
  110. 110.
    Hedge ML, Hazra TK, Mitra S (2008) Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 18:27–47CrossRefGoogle Scholar
  111. 111.
    Mitra S, Boldogh I, Izumi T, Hazra TK (2001) Complexities of the DNA base excision repair pathway for repair of oxidative DNA damage. Environ Mol Mutagen 38:180–190PubMedCrossRefGoogle Scholar
  112. 112.
    Gros L, Saparbaev MK, Laval J (2002) Enzymology of the repair of free radicals-induced DNA damage. Oncogene 21:8905–8925PubMedCrossRefGoogle Scholar
  113. 113.
    Wu J, Gu L, Wang H, Geacintov NE, Li GM (1999) Mismatch repair processing of carcinogen-DNA adducts triggers apoptosis. Mol Cell Biol 19:8292–8301PubMedGoogle Scholar
  114. 114.
    Vaisman A, Masutani C, Hanaoka F, Chaney SG (2000) Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase η. Biochemistry 39:4575–4580PubMedCrossRefGoogle Scholar
  115. 115.
    Colussi C, Parlanti E, Degan P, Aquilina G, Barnes D, Macpherson P, Karran P, Crescenzi M, Dogliotti E, Bignami M (2002) The mammalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool. Curr Biol 12:912–918PubMedCrossRefGoogle Scholar
  116. 116.
    Christmann M, Tomicic MT, Roos WP, Kaina B (2003) Mechansims of human DNA repair: an update. Toxicology 193:3–34PubMedCrossRefGoogle Scholar
  117. 117.
    Young LC, Keuling AM, Lai R, Nation PN, Tron VA, Andrew SE (2007) The associated contributions of p53 and the DNA mismatch repair protein Msh6 to spontaneous tumorigenesis. Carcinogenesis 28:2131–2138PubMedCrossRefGoogle Scholar
  118. 118.
    Stout GJ, van Oosten M, Acherrat FZ, de Wit J, Vermeij WP, Mullenders LHF, de Gruijl FR, Backendorf C (2005) Selective DNA damage responses in murine Xpa —/—, Xpc —/— and Csb —/— keratinocyte cultures. DNA Repair 4:1337–1344PubMedCrossRefGoogle Scholar
  119. 119.
    Stuart D, Khan QA, Brown R, Dipple A (2001) Hydrocarbon carcinogens induce p53 activity in normal mouse tissue. Cancer Lett 173:111–114PubMedCrossRefGoogle Scholar
  120. 120.
    Pääjärvi G, Jernström B, Seidel A, Stenius U (2008) Anti-diol epoxide of benzo[a]pyrene induces transient Mdm2 and p53 Ser15 phosphorylation, while anti-diol epoxide of dibenzo-[a,l]pyrene induces a nontransient p53 Ser15 phosphorylation. Mol Carcinog 47:301–309PubMedCrossRefGoogle Scholar
  121. 121.
    Bhana S, Lloyd DR (2008) The role of p53 in DNA damage-mediated cytotoxicity overrides its ability to regulate nucleotide excision repair in human fibroblasts. Mutagenesis 23:43–50PubMedCrossRefGoogle Scholar
  122. 122.
    Hahn ME, Allan LA, Sherr DH (2009) Regulation of constitutive and inducible AHR signaling: complex interactions involving the AHR repressor. Biochem Pharmacol 77:485–497PubMedCrossRefGoogle Scholar
  123. 123.
    Duchaud E, Ridet A, Stoppa-Lyonnet D, Janin N, Moustacchi E, Rosselli F (1996) Deregulated apoptosis in ataxia telangiectasia: association with clinical stigmata and radiosensitivity. Cancer Res 56:1400–1404PubMedGoogle Scholar
  124. 124.
    Norbury CJ, Zhivotovsky B (2004) DNA damage-induced apoptosis. Oncogene 23: 2797–2808PubMedCrossRefGoogle Scholar
  125. 125.
    Yhivotovsky B, Kroemer G (2004) Apoptosis and genomic instability. Nat Rev Mol Cell Biol 5:752–762CrossRefGoogle Scholar
  126. 126.
    Al-Ejeh F, Kumar R, Wiegmans A, Lakhani SR, Brown MP, Khanna KK (2010) Harnessing the complexity of DNA-damage response pathways to improve cancer treatment outcomes. Oncogene 29:6085–6098PubMedCrossRefGoogle Scholar
  127. 127.
    Hartley KO, Gell D, Smith GC, Zhang H, Divecha N, Connelly MA, Admon A, Lees-Miller SP, Anderson CW, Jackson SP (1995) DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82:849–856PubMedCrossRefGoogle Scholar
  128. 128.
    Smith J, Tho LM, Xu N, Gillespie DA (2010) The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108:73–112PubMedCrossRefGoogle Scholar
  129. 129.
    Vaziri C, Faller DV (1997) A benzo[a]pyrene-induced cell cycle checkpoint resulting in p53-independent G1 arrest in 3T3 fibroblasts. J Biol Chem 272:2762–2769PubMedCrossRefGoogle Scholar
  130. 130.
    Guo N, Faller DV, Vaziri C (2002) Carcinogen-induced S-phase arrest is Chk1 mediated and caffeine sensitive. Cell Growth Differ 13:77–86PubMedGoogle Scholar
  131. 131.
    Bi X, Slater DM, Ohmori H, Vaziri C (2005) DNA polymerase κ is specifically required for recovery from the benzo[a]pyrene-dihydrodiol epoxide (BPDE)-induced S-phase checkpoint. J Biol Chem 280:22343–22355PubMedCrossRefGoogle Scholar
  132. 132.
    Caino MC, Oliva JL, Jiang H, Penning TM, Kazanietz MG (2007) Benzo[a]pyrene-7,8-dihydrodiol promotes checkpoint activation and G2/M arrest in human bronchoalveolar carcinoma H358 cells. Mol Pharmacol 71:744–750PubMedCrossRefGoogle Scholar
  133. 133.
    Ford JM (2005) Regulation of DNA damage recognition and nucleotide excision repair: another role for p53. Mutat Res 577:195–202PubMedCrossRefGoogle Scholar
  134. 134.
    Adimoolam S, Ford JM (2002) p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci USA 99:12985–12990PubMedCrossRefGoogle Scholar
  135. 135.
    Adimoolam S, Ford JM (2003) p53 and regulation of DNA damage recognition during nucleotide excision repair. DNA Repair 18:947–954CrossRefGoogle Scholar
  136. 136.
    Lloyd DR, Hanawalt PC (2000) p53-dependent global genomic repair of benzo[a]pyrene-7,8-diol-9,10-epoxide adducts in human cells. Cancer Res 60:517–521PubMedGoogle Scholar
  137. 137.
    Lloyd DR, Hanawalt PC (2002) p53 controls global nucleotide excision repair of low levels of structurally diverse benzo[g]chrysene-DNA adducts in human fibroblasts. Cancer Res 62:5288–5294PubMedGoogle Scholar
  138. 138.
    Hanawalt PC, Ford JM, Lloyd DR (2003) Functional characterization of global genomic DNA repair and its implications for cancer. Mutat Res 544:107–114PubMedCrossRefGoogle Scholar
  139. 139.
    Luch A, Kudla K, Seidel A, Doehmer J, Greim H, Baird WM (1999) The level of DNA modification by (+)-syn-(11S,12R,13S,14R)- and (–)-anti-(11R,12S,13S,14R)-dihydrodiol epoxides of dibenzo[a,1]pyrene determined the effect on the proteins p53 and p21WAF1 in the human mammary carcinoma cell line MCF-7. Carcinogenesis 20:859–865PubMedCrossRefGoogle Scholar
  140. 140.
    Nakanishi Y, Pei XH, Takayama K, Bai F, Izumi M, Kimotsuki K, Inoue K, Minami T, Wataya H, Hara N (2000) Polycyclic aromatic hydrocarbon carcinogens increase ubiquitination of p21 protein after the stabilization of p53 and the expression of p21. Am J Respir Cell Mol Biol 22:747–754PubMedGoogle Scholar
  141. 141.
    Högberg J, Silins I, Stenius U (2009) Chemical induced alterations in p53 signaling. In: Luch A (ed) Molecular, clinical and environmental toxicology, vol 1. Birkhäuser, Basel, pp 181–208CrossRefGoogle Scholar
  142. 142.
    Auclair Y, Rouget R, El Affar B, Drobetsky EA (2008) ATR kinase is required for global genomic nucleotide excision repair exclusively during S phase in human cells. Proc Natl Acad Sci USA 105:17896–17901PubMedCrossRefGoogle Scholar
  143. 143.
    Auclair Y, Rouget R, Drobetsky EA (2009) ATR kinase as master regulator of nucleotide excision repair during S phase of the cell cycle. Cell Cycle 8:1865–1871PubMedCrossRefGoogle Scholar
  144. 144.
    Colton SL, Xu XS, Wang YA, Wang G (2006) The involvement of ataxia-telangiectasia mutated protein activation in nucleotide excision repair-facilitated cell survival with cisplatin treatment. J Biol Chem 281:27117–27125PubMedCrossRefGoogle Scholar
  145. 145.
    Wu X, Shell SM, Zou Y (2005) Interaction and colocalization of Rad9/Rad1/Hus1 checkpoint complex with replication protein A in human cells. Oncogene 24:4728–4735PubMedCrossRefGoogle Scholar
  146. 146.
    Wu X, Shell SM, Liu Y, Zou Y (2007) ATR-dependent checkpoint modulates XPA nuclear import in response to UV irradiation. Oncogene 26:757–764PubMedCrossRefGoogle Scholar
  147. 147.
    Wu X, Shell SM, Yang Z, Zou Y (2006) Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group A by ataxia telangiectasia mutated and Rad3-related-dependent checkpoint pathway promotes cell survival in response to UV irradiation. Cancer Res 66:2997–3005PubMedCrossRefGoogle Scholar
  148. 148.
    Ko CB, Kim SJ, Park C, Kim BR, Shin CH, Choi S, Chung SY, Noh JH, Jeun JH, Kim NS, Park R (2004) Benzo[a]pyrene-induced apoptotic death of mouse hepatoma Hepa1c1c7 cells via activation of intrinsic caspase cascade and mitochondrial dysfunction. Toxicology 199:35–46PubMedCrossRefGoogle Scholar
  149. 149.
    Kim SJ, Ko CB, Park C, Kim BR, Sung TH, Koh DH, Kim NS, Oh KJ, Chung SY, Park R (2005) p38 MAP kinase regulates benzo[a]pyrene-induced apoptosis through th regulation of p53 activation. Arch Biochem Biophys 444:121–129PubMedCrossRefGoogle Scholar
  150. 150.
    Chen S, Nguyen N, Tamura K, Karin M, Tukey RH (2003) The role of the Ah receptor and p38 in benzo[a]pyrene-7,8-dihydrodiol and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-induced apoptosis. J Biol Chem 278:19526–19533PubMedCrossRefGoogle Scholar
  151. 151.
    Lin T, Mak NK, Yang MS (2008) MAPK regulate p53-dependent cell death induced by benzo[a]pyrene: involvement of p53 phosphorylation and acetylation. Toxicology 247: 145–153PubMedCrossRefGoogle Scholar
  152. 152.
    Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E, Fornace AJ Jr (1999) Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18:6845–6854PubMedCrossRefGoogle Scholar
  153. 153.
    Bulavin DV, Fornace AJ Jr (2004) p38 MAP kinase’s emerging role as a tumor suppressor. Adv Cancer Res 92:95–118PubMedCrossRefGoogle Scholar
  154. 154.
    Barkley LR, Ohmori H, Vaziri C (2007) Integrating S-phase checkpoint signaling with trans-lesion synthesis of bulky DNA adducts. Cell Biochem Biophys 47:392–408PubMedCrossRefGoogle Scholar
  155. 155.
    Wani MA, Zhu Q, El-Mahdy M, Venkatachalam S, Wani AA (2000) Enhanced sensitivity to anti-benzo[a]pyrene-diol-epoxide DNA damage correlates with decreased global genomic repair attributable to abrogated p53 function in human cells. Cancer Res 60:2273–2280PubMedGoogle Scholar
  156. 156.
    Paules RS, Cordeiro-Stone M, Mass MJ, Poirier MC, Yuspa SH, Kaufman DG (1988) Benzo[a]pyrene diol epoxide I binds to DNA at replication forks. Proc Natl Acad Sci USA 85:2176–2180PubMedCrossRefGoogle Scholar
  157. 157.
    Sidi S, Sanda T, Kennedy RD, Hagen AT, Jette CA, Hoffmans R, Pascual J, Imamura S, Kishi S, Amatruda JF, Kanki JP, Green DR, D’Andrea AA, Look AT (2008) Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133:864–877PubMedCrossRefGoogle Scholar
  158. 158.
    Olson JM, Hallahan AR (2004) p38 MAP kinase: a convergence point in cancer therapy. Trends Mol Med 10:125–129PubMedCrossRefGoogle Scholar
  159. 159.
    Galan-Moya EM, Hernandez-Losa J, Aceves Luquero CI, de la Cruz-Morcillo MA, Ramírez-Castillejo C, Callejas-Valera JL, Arriaga A, Aranburo AF, Ramón y Cajal S, Gutkind JS, Sánchez-Prieto R (2008) c-Abl activates p38 MAPK independently of its tyrosine kinase activity: implications in cisplatin-based therapy. Int J Cancer 122: 289–297PubMedCrossRefGoogle Scholar
  160. 160.
    Huc L, Sparfel L, Rissel M, Dimanche-Boitrel MT, Guillouzo A, Fardel O, Lagadic-Gossmann D (2004) Identification of Na+/H+ exchange as a new target for toxic polycyclic aromatic hydrocarbons. FASEB J 18:344–346PubMedGoogle Scholar
  161. 161.
    Huc L, Rissel M, Solhaug A, Tekpli X, Gorria M, Torriglia A, Holme JA, Dimanche-Boitrel MT, Lagadic-Gossmann D (2006) Multiple apoptotic pathways induced by p53-dependent acidification in benzo[a]pyrene-exposed hepatic F258 cells. J Cell Physiol 208:527–537PubMedCrossRefGoogle Scholar
  162. 162.
    Huc L, Tekpli X, Holme JA, Rissel M, Solhaug A, Gardyn C, Le Moigne G, Gorria M, Dimanche-Boitrel MT, Lagadic-Gossmann D (2007) c-Jun NH2-terminal kinase-related Na+/H+ exchanger isoform 1 activation controls hexokinase II expression in benzo[a]pyrene-induced apoptosis. Cancer Res 67:1696–1705PubMedCrossRefGoogle Scholar
  163. 163.
    Burdick AD, Davis JW 2nd, Liu KJ, Hudson LG, Shi H, Monske ML, Burchiel SW (2003) Benzo[a]pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells. Cancer Res 63:7825–7833PubMedGoogle Scholar
  164. 164.
    Burdick AD, Ivnitski-Steele ID, Lauer FT, Burchiel SW (2006) PYK2 mediates anti-apoptotic AKT signaling in response to benzo[a]pyrene diol epoxide in mammary epithelial cells. Carcinogenesis 27:2331–2340PubMedCrossRefGoogle Scholar
  165. 165.
    Tannheimer SL, Ethier SP, Caldwell KK, Burchiel SW (1998) Benzo[a]pyrene- and TCDD-induced alterations in tyrosine phosphorylation and insulin-like growth factor signaling pathways in the MCF-10A human mammary epithelial cell line. Carcinogenesis 19: 1291–1297PubMedCrossRefGoogle Scholar
  166. 166.
    Rodriguez-Fragoso L, Melendez K, Hudson LG, Lauer FT, Burchiel SW (2009) EGF-receptor phosphorylation and downstream signaling are activated by benzo[a]pyrene 3,6-quinone and benzo[a]pyrene 1,6-quinone in human mammary epithelial cells. Toxicol Appl Pharmacol 235:321–328PubMedCrossRefGoogle Scholar
  167. 167.
    Pourazar J, Blomberg KFJ, Davies DE, Wilson SJ, Holgate ST, Sandström T (2008) Diesel exhaust increases EGFR and phosphorylated C-terminal Tyr 1173 in the bronchial epithelium. Part Fibre Toxicol 5:8–17PubMedCrossRefGoogle Scholar
  168. 168.
    Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312: 1882–1883PubMedCrossRefGoogle Scholar
  169. 169.
    Lecureur V, Ferrec EL, N’diaye M, Vee ML, Gardyn C, Gilot D, Fardel O (2005) ERK-dependent induction of TNFα expression by the environmental contaminant benzo[a]pyrene in primary human macrophages. FEBS Lett 579:1904–1910PubMedCrossRefGoogle Scholar
  170. 170.
    Umannová L, Machala M, Topinka J, Nováková Z, Milcová A, Kozubík A, Vondrácek J (2008) Tumor necrosis factor-α potentiates genotoxic effects of benzo[a]pyrene in rat liver epithelial cells through upregulation of cytochrome P450 1B1 expression. Mutat Res 640: 162–169PubMedCrossRefGoogle Scholar
  171. 171.
    Umannová L, Zatloukalová J, Machala M, Krčmář P, Májková Z, Hennig B, Kozubík A, Vondrácek J (2007) Tumor necrosis factor-α modulates effects of aryl hydrocarbon receptor ligands on cell proliferation and expression of cytochrome P450 enzymes in rat liver “stem-like” cells. Toxicol Sci 99:79–89PubMedCrossRefGoogle Scholar
  172. 172.
    Umannová L, Machala M, Topinka J, Schmuczerová J, Krčmář P, Neča J, Šujanová K, Kozubík A, Vondrácek J (2011) Benzo[a]pyrene and tumor necrosis factor-α coordinately increase genotoxic damage and the production of proinflammatory mediators in alveolar epithelial type II cells. Toxicol Lett 206:121–129PubMedCrossRefGoogle Scholar
  173. 173.
    Barouki R, Coumoul X, Fernandez-Salguero PM (2007) The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett 58:3608–3615CrossRefGoogle Scholar
  174. 174.
    Curfs DM, Knaapen AM, Pachen DM, Gijbels MJ, Lutgens E, Smook ML, Kockx MM, Daemen MJ, van Schooten FJ (2005) Polycyclic aromatic hydrocarbons induce an inflammatory atherosclerotic plaque phenotype irrespective of their DNA binding properties. FASEB J 19:1290–1292PubMedGoogle Scholar
  175. 175.
    Kepley CL, Lauer FT, Oliver JM, Burchiel SW (2003) Environmental polycyclic aromatic hydrocarbons, benzo[a]pyrene (BaP) and BaP-quinones, enhance IgE-mediated histamine release and IL-4 production in human basophils. Clin Immunol 107:10–19PubMedCrossRefGoogle Scholar
  176. 176.
    Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109PubMedCrossRefGoogle Scholar
  177. 177.
    Stolpmann K, Brinkmann J, Salzmann S, Genkinger D, Fritsche E, Hutzler C, Wajant H, Luch A, Henkler F (2011) Activation of the aryl hydrocarbon receptor sensitizes human keratinocytes for CD95L- and TRAIL-induced apoptosis. SubmittedGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Frank Henkler
    • 1
  • Kristin Stolpmann
    • 1
  • Andreas Luch
    • 1
  1. 1.Department of Product SafetyGerman Federal Institute for Risk Assessment (BfR)BerlinGermany

Personalised recommendations