Skip to main content

From mice to men: the challenges of developing tolerance-inducing biological drugs for the clinic

  • Chapter
The Immune Synapse as a Novel Target for Therapy

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Before discussing the specific barriers to clinical therapeutic tolerance, it is useful to review the steps involved in biological drug development in general. The first is to identify an appropriate therapeutic target(s) based on current understanding of disease pathogenesis, which may be molecular or cellular in nature: an appropriately designed biologic that binds this target might reasonably be expected to influence the disease process. So-called “proof of concept” studies are then developed, typically in rodent models, to assess efficacy, safety, toxicity, immunogenicity, pharmacokinetics and metabolism of the newly developed biological drug. By their very nature, however, biological drugs that recognize animal targets generally will not recognize the equivalent human molecule. For instance, a monoclonal antibody (mAb) that binds murine CD3 will not recognize the human molecule due to inter-species differences in CD3 structure. Consequently, a different mAb must be developed for clinical studies, which will first be tested in in vitro and ex vivo studies using human cells or tissues, as well as in non-human primate models. Finally, the therapy will be evaluated in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buchan G, Barrett K, Turner M, Chantry D, Maini RN, Feldmann M (1988) Interleukin-1 and tumour necrosis factor mRNA expression in rheumatoid arthritis: prolonged production of IL-1 alpha. Clin Exp Immunol 73: 449–455

    PubMed  CAS  Google Scholar 

  2. Brennan FM, Chantry D, Jackson A, Maini R, Feldmann M (1989) Inhibitory effect of TNF alpha antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 2: 244–247

    Article  PubMed  CAS  Google Scholar 

  3. Williams RO, Feldmann M, Maini RN (1992) Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci USA 89: 9784–9788

    Article  PubMed  CAS  Google Scholar 

  4. Lipsky PE, van der Heijde DM, St Clair EW, Furst DE, Breedveld FC, Kalden JR, Smolen JS, Weisman M, Emery P, Feldmann M et al (2000) Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N Engl J Med 343: 1594–1602

    Article  PubMed  CAS  Google Scholar 

  5. Elliott MJ, Maini RN, Feldmann M, Kalden JR, Antoni C, Smolen JS, Leeb B, Breedveld FC, Macfarlane JD, Bijl H et al (1994) Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 344: 1105–1110

    Article  PubMed  CAS  Google Scholar 

  6. Nixon R, Bansback N, Brennan A (2007) The efficacy of inhibiting tumour necrosis factor alpha and interleukin 1 in patients with rheumatoid arthritis: a meta-analysis and adjusted indirect comparisons. Rheumatology (Oxford) 46: 1140–1147

    Article  CAS  Google Scholar 

  7. Cohen S, Hurd E, Cush J, Schiff M, Weinblatt M, Moreland L, Kramer J, Bear M, Rich W, McCabe D (2002) Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: Results of a twenty-four-week, multicenter, randomised, double-blind, placebo-controlled trial. Arthritis Rheum 46: 614–624

    Article  PubMed  CAS  Google Scholar 

  8. Targan S, Hanauer S, van Deventer S, Mayer L, Present D, Braakman T, DeWoody K, Schaible T, Rutgeerts P (1997) A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor for Crohn’s disease. N Engl J Med 337: 1029–1036

    Article  PubMed  CAS  Google Scholar 

  9. Sandborn WJ, Hanauer SB, Katz S, Safdi M, Wolf DG, Baerg RD, Tremaine WJ, Johnson T, Diehl NN, Zinsmeister AR (2001) Etanercept for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 121: 1088–1094

    Article  PubMed  CAS  Google Scholar 

  10. Nikas SN, Voulgari PV, Alamanos Y, Papadopoulos CG, Venetsanopoulou AI, Georgiadis AN, Drosos AA (2006) Efficacy and safety of switching from infliximab to adalimumab: a comparative controlled study. Ann Rheum Dis 65: 257–260

    Article  PubMed  CAS  Google Scholar 

  11. Hansen KE, Hildebrand JP, Genovese MC, Cush JJ, Patel S, Cooley DA, Cohen SB, Gangnon RE, Schiff MH (2004) The efficacy of switching from etanercept to infliximab in patients with rheumatoid arthritis. J Rheumatol 31: 1098–1102

    PubMed  CAS  Google Scholar 

  12. van Vollenhoven R, Harju A, Brannemark S, Klareskog L (2003) Treatment with infliximab (Remicade) when etancercept (Enbrel) has failed or vice versa: data from the STURE registry showing that switching tumour necrosis factor alpha blockers can make sense. Ann Rheum Dis 62: 1195–1198

    Article  PubMed  CAS  Google Scholar 

  13. Waldmann H, Cobbold S (1998) How do monoclonal antibodies induce tolerance? A role for infectious tolerance? Annu Rev Immunol 16: 619–644

    Article  PubMed  CAS  Google Scholar 

  14. Cobbold S, Qin S, Leong L, Martin G, Waldmann H (1992) Reprogramming the immune system for peripheral tolerance with CD4 and CD8 monoclonal antibodies. Immunol Rev 129: 165–201

    Article  PubMed  CAS  Google Scholar 

  15. Strand V, Kimberly R, Isaacs JD (2007) Biologic therapies in rheumatology: lessons learned, future directions. Nat Rev Drug Discov 6: 75–92

    Article  PubMed  CAS  Google Scholar 

  16. Louis E, El Ghoul Z, Vermeire S, Dall’Ozzo S, Rutgeerts P, Paintaud G, Belaiche J, De Vos M, Van Gossum A, Colombel J et al (2005) Association between polymorphism in IgG Fc receptor IIIa coding gene and biological response to infliximab in Crohn’s disease. Inflamm Bowel Dis 11: 75–76

    Article  Google Scholar 

  17. Anolik J, Campbell D, Felgar R, Young F, Sanz I, Rosenblatt J, Looney R (2003) The relationship of FcgammaRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum 48: 455–459

    Article  PubMed  CAS  Google Scholar 

  18. Tutuncu Z, Kavanaugh A, Zvaifler N, Corr M, Deutsch R, Boyle D (2005) Fc-gamma receptor type IIIA polymorphisms influence treatment outcomes in patients with inflammatory arthritis treated with tumor necrosis factor alpha-blocking agents. Arthritis Rheum 52: 2693–2696

    Article  PubMed  CAS  Google Scholar 

  19. Kastbom A, Bratt J, Ernestam S, Lampa J, Padyukov L, Soderkvist P, Skogh T (2007) Fcgamma receptor type IIIA genotype and response to tumor necrosis factor alphablocking agents in patients with rheumatoid arthritis. Arthritis Rheum 56: 448–452

    Article  PubMed  CAS  Google Scholar 

  20. Roll P, Palanichamy A, Kneitz C, Dorner T, Tony HP (2006) Regeneration of B cell subsets after transient B cell depletion using anti-CD20 antibodies in rheumatoid arthritis. Arthritis Rheum 54: 2377–2386

    Article  PubMed  CAS  Google Scholar 

  21. Silverman GJ (2006) Therapeutic B cell depletion and regeneration in rheumatoid arthritis: emerging patterns and paradigms. Arthritis Rheum 54: 2356–2367

    Article  PubMed  CAS  Google Scholar 

  22. Koshiba T, Kitade H, Van Damme B, Giulietti A, Overbergh L, Mathieu C, Waer M, Pirenne J (2003) Regulatory cell-mediated tolerance does not protect against chronic rejection. Transplantation 76: 588–596

    Article  PubMed  CAS  Google Scholar 

  23. Alexander JW, Light JA, Donaldson LA, Delmonico FL, Diethelm AG, Wilkinson A, Rosenthal JT, Thistlethwaite JR, Hunsicker LG, Matas AJ et al (1999) Evaluation of pre-and posttransplant donor-specific transfusion/cyclosporine A in non-HLA identical living donor kidney transplant recipients. Cooperative Clinical Trials in Transplantation Research Group. Transplantation 68: 1117–1124

    Article  PubMed  CAS  Google Scholar 

  24. Beyersdorf N, Gaupp S, Balbach K, Schmidt J, Toyka KV, Lin CH, Hanke T, Hunig T, Kerkau T, Gold R (2005) Selective targeting of regulatory T cells with CD28 superagonists allows effective therapy of experimental autoimmune encephalomyelitis. J Exp Med 202: 445–455

    Article  PubMed  CAS  Google Scholar 

  25. Mason D (1998) A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today 19: 395–404

    Article  PubMed  CAS  Google Scholar 

  26. Yang H, Welsh RM (1986) Induction of alloreactive cytotoxic T cells by acute virus infection of mice. J Immunol 136: 1186–1193

    PubMed  CAS  Google Scholar 

  27. Braciale TJ, Andrew ME, Braciale VL (1981) Simultaneous expression of H-2-restricted and alloreactive recognition by a cloned line of influenza virus-specific cytotoxic T lymphocytes. J Exp Med 153: 1371–1376

    Article  PubMed  CAS  Google Scholar 

  28. Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+CD25+ T cellmediated suppression by dendritic cells. Science 299: 1033–1036

    Article  PubMed  CAS  Google Scholar 

  29. Adams AB, Williams MA, Jones TR, Shirasugi N, Durham MM, Kaech SM, Wherry EJ, Onami T, Lanier JG, Kokko KE et al (2003) Heterologous immunity provides a potent barrier to transplantation tolerance. J Clin Invest 111: 1887–1895

    Article  PubMed  CAS  Google Scholar 

  30. Lombardi G, Sidhu S, Daly M, Batchelor JR, Makgoba W, Lechler RI (1990) Are primary alloresponses truly primary? Int Immunol 2: 9–13

    Article  PubMed  CAS  Google Scholar 

  31. Lanzavecchia A, Sallusto F (2000) From synapses to immunological memory: the role of sustained T cell stimulation. Curr Opin Immunol 12: 92–98

    Article  PubMed  CAS  Google Scholar 

  32. London CA, Lodge MP, Abbas AK (2000) Functional responses and costimulator dependence of memory CD4+ T cells. J Immunol 164: 265–272

    PubMed  CAS  Google Scholar 

  33. Wu Z, Bensinger SJ, Zhang J, Chen C, Yuan X, Huang X, Markmann JF, Kassaee A, Rosengard BR, Hancock WW et al (2004) Homeostatic proliferation is a barrier to transplantation tolerance. Nat Med 10: 87–92

    Article  PubMed  CAS  Google Scholar 

  34. Valujskikh A, Pantenburg B, Heeger PS (2002) Primed allospecific T cells prevent the effects of costimulatory blockade on prolonged cardiac allograft survival in mice. Am J Transplant 2: 501–509

    Article  PubMed  CAS  Google Scholar 

  35. Zhai Y, Meng L, Gao F, Busuttil RW, Kupiec-Weglinski JW (2002) Allograft rejection by primed/memory CD8+ T cells is CD154 blockade resistant: therapeutic implications for sensitized transplant recipients. J Immunol 169: 4667–4673

    PubMed  CAS  Google Scholar 

  36. Hunig T, Dennehy K (2005) CD28 superagonists: mode of action and therapeutic potential. Immunol Lett 100: 21–28

    Article  PubMed  CAS  Google Scholar 

  37. Marshall E (2006) Drug trials. Violent reaction to monoclonal antibody therapy remains a mystery. Science 311: 1688–1689

    Article  PubMed  Google Scholar 

  38. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355: 1018–1028

    Article  PubMed  CAS  Google Scholar 

  39. Fishwild D, Hudson D, Deshpande U, Kung A (1999) Differential effects of administration of a human anti-CD4 monoclonal antibody, HM6G, in nonhuman primates. Clin Immunol 92: 138–152

    Article  PubMed  CAS  Google Scholar 

  40. Greenwood J, Clark M, Waldmann H (1993) Structural motifs involved in human IgG antibody effector functions. Eur J Immunol 23: 1098–1104

    Article  PubMed  CAS  Google Scholar 

  41. Wu J, Edberg J, Redecha P, Bansal V, Guyre P, Coleman K, Salmon J, Kimberly R (1997) A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 100: 1059–1070

    Article  PubMed  CAS  Google Scholar 

  42. Junghans RP, Anderson CL (1996) The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci USA 93: 5512–5516

    Article  PubMed  CAS  Google Scholar 

  43. Isaacs J, Greenwood J, Waldmann H (1998) Therapy with monoclonal antibodies. II. The contribution of Fcg receptor binding and the influence of Ch1 and Ch3 domains on in vivo effector function. J Immunol 161: 3863–3869

    Google Scholar 

  44. Ghetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, Ober RJ, Ward E (1997) Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat Biotechnol 15: 637–640

    Article  PubMed  CAS  Google Scholar 

  45. Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7: 118–130

    Article  PubMed  CAS  Google Scholar 

  46. Isaacs J, Wing M, Greenwood J, Hazleman B, Hale G, Waldmann H (1996) A therapeutic human IgG4 monoclonal antibody that depletes target cells in humans. Clin Exp Immunol 106: 427–433

    Article  PubMed  CAS  Google Scholar 

  47. Wolbink GJ, Vis M, Lems W, Voskuyl AE, de Groot E, Nurmohamed MT, Stapel S, Tak PP, Aarden L, Dijkmans B (2006) Development of antiinfliximab antibodies and relationship to clinical response in patients with rheumatoid arthritis. Arthritis Rheum 54: 711–715

    Article  PubMed  CAS  Google Scholar 

  48. Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis D, Macfarlane JD, Antoni C, Leeb B, Elliott MJ, Woody JN et al (1998) Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with lowdose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 41: 1552–1563

    Article  PubMed  CAS  Google Scholar 

  49. Strand V, Lipsky PE, Cannon GW, Calabrese LH, Wiesenhutter C, Cohen SB, Olsen NJ, Lee ML, Lorenz TJ, Nelson B (1993) Effects of administration of an anti-CD5 plus immunoconjugate in rheumatoid arthritis. Results of two Phase II studies. The CD5 Plus Rheumatoid Arthritis Investigators Group. Arthritis Rheum 36: 620–630

    Article  PubMed  CAS  Google Scholar 

  50. Benjamin R, Cobbold S, Clark M, Waldmann H (1986) Tolerance to rat monoclonal antibodies. Implications for serotherapy. J Exp Med 163: 1539–1552

    Article  PubMed  CAS  Google Scholar 

  51. Gilliland L, Walsh L, Frewin M, Wise M, Tone M, Hale G, Kioussis D, Waldmann H (1999) Elimination of the immunogenicity of therapeutic antibodies. J Immunol 162: 3663–3671

    PubMed  CAS  Google Scholar 

  52. Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, Teoh LA, Fischkoff SA, Chartash EK (2003) Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 48: 35–45

    Article  PubMed  CAS  Google Scholar 

  53. Hanauer S, Feagan B, Lichtenstein G, Mayer L, Schreiber S, Colombel J, Rachmilewitz D, Wolf D, Olson A, Bao W et al (2002) Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 359: 1541–1549

    Article  PubMed  CAS  Google Scholar 

  54. Rutgeerts P, D’Haens G, Targan S, Vasiliauskas E, Hanauer S, Present D, Mayer L, Van Hogezand R, Braakman T, DeWoody K et al (1999) Efficacy and safety of retreatment with anti-tumor necrosis factor antibody (infliximab) to maintain remission in Crohn’s disease. Gastroenterology 117: 761–769

    Article  PubMed  CAS  Google Scholar 

  55. Clark M (2000) Antibody humanization: a case of the “Emperor’s new clothes”? Immunol Today 21: 397–402

    Article  PubMed  CAS  Google Scholar 

  56. Gao W, Lu Y, El Essawy B, Oukka M, Kuchroo VK, Strom TB (2007) Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells. Am J Transplant 7: 1722–1732

    Article  PubMed  CAS  Google Scholar 

  57. Jenkins MK, Chen CA, Jung G, Mueller DL, Schwartz RH (1990) Inhibition of antigenspecific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J Immunol 144: 16–22

    PubMed  CAS  Google Scholar 

  58. Woodside KJ, Hu M, Liu Y, Song W, Hunter GC, Daller JA (2006) Apoptosis of allo-specifically activated human helper T cells is blocked by calcineurin inhibition. Transpl Immunol 15: 229–234

    Article  PubMed  CAS  Google Scholar 

  59. Qu Y, Zhang B, Zhao L, Liu G, Ma H, Rao E, Zeng C, Zhao Y (2007) The effect of immunosuppressive drug rapamycin on regulatory CD4+CD25+Foxp3+ T cells in mice. Transpl Immunol 17: 153–161

    Article  PubMed  CAS  Google Scholar 

  60. Goekoop-Ruiterman YP, de Vries-Bouwstra JK, Allaart CF, van Zeben D, Kerstens PJ, Hazes JM, Zwinderman AH, Ronday HK, Han KH, Westedt ML et al (2005) Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt study): a randomized, controlled trial. Arthritis Rheum 52: 3381–3390

    Article  PubMed  CAS  Google Scholar 

  61. Chatenoud L (2006) Immune therapies of autoimmune diseases: are we approaching a real cure? Curr Opin Immunol 18: 710–717

    Article  PubMed  CAS  Google Scholar 

  62. Network It www.immunetolerance.org

    Google Scholar 

  63. Devlin J, Doherty D, Thomson L, Wong T, Donaldson P, Portmann B, Williams R (1998) Defining the outcome of immunosuppression withdrawal after liver transplantation. Hepatology 27: 926–933

    Article  PubMed  CAS  Google Scholar 

  64. Mazariegos GV, Reyes J, Marino IR, Demetris AJ, Flynn B, Irish W, McMichael J, Fung JJ, Starzl TE (1997) Weaning of immunosuppression in liver transplant recipients. Transplantation 63: 243–249

    Article  PubMed  CAS  Google Scholar 

  65. Zoller KM, Cho SI, Cohen JJ, Harrington JT (1980) Cessation of immunosuppressive therapy after successful transplantation: a national survey. Kidney Int 18: 110–114

    Article  PubMed  CAS  Google Scholar 

  66. Roussey-Kesler G, Giral M, Moreau A, Subra JF, Legendre C, Noel C, Pillebout E, Brouard S, Soulillou JP (2006) Clinical operational tolerance after kidney transplantation. Am J Transplant 6: 736–746

    Article  PubMed  CAS  Google Scholar 

  67. Calne R, Friend P, Moffatt S, Bradley A, Hale G, Firth J, Bradley J, Smith K, Waldmann H (1998) Prope tolerance, perioperative campath 1H, and low-dose cyclosporin monotherapy in renal allograft recipients. Lancet 351: 1701–1702

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Ng, WF., Isaacs, J.D. (2008). From mice to men: the challenges of developing tolerance-inducing biological drugs for the clinic. In: Graca, L. (eds) The Immune Synapse as a Novel Target for Therapy. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8296-4_12

Download citation

Publish with us

Policies and ethics