Advertisement

Relative Proportionality on Picard and Hilbert Modular Surfaces

  • Rolf-Peter Holzapfel
Chapter
Part of the Progress in Mathematics book series (PM, volume 260)

Abstract

We introduce “orbital categories”. The background objects are compactified quotient varieties of bounded symmetric domains \( \mathbb{B} \) by lattice subgroups of the complex automorphism group of \( \mathbb{B} \). Additionally, we endow some subvarieties of a given compact complex normal variety V with a natural weight > 1, imitating ramifications. They define an “orbital cycle” Z. The pairs V = (V,Z) are orbital varieties. These objects — also understood as an explicit approach to stacks — allow to introduce “orbital invariants” in a functorial manner. Typical are the orbital categories of Hilbert and Picard modular spaces. From the finite orbital data (e.g. the orbital Apollonius cycle on ℙ2) we read off “orbital Heegner series” as orbital invariants with the help of “orbital intersection theory”. We demonstrate for Hilbert and Picard surface F how their Fourier coefficients can be used to count Shimura curves of given norm on F. On recently discovered orbital projective planes the Shimura curves are joined with well-known classical elliptic modular forms.

Keywords

Orbital varieties arithmetic groups unit ball Picard modular surfaces Hilbert modular surfaces Shimura curves modular curves modularforms surface singularities rational intersections theta functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    A. Borel, Introduction aux groupes arithmétiques, Herman Paris, 1969.Google Scholar
  2. [Cog]
    J.W. Cogdell, Arithmetic cycles on Picard modular surfaces and modular forms of Nebentypus, Journ. f. Math. 357 (1984), 115–137.MathSciNetGoogle Scholar
  3. [D]
    I. Dolgachev, Automorphic forms and quasi-homogeneous singularities, Funkt. Analysis y Priloz. 9 (1975), 67–68.Google Scholar
  4. [Heck]
    E. Hecke, Analytische Arithmetik der positiven quadratischen Formen, Kgl. Danske Vid. Selskab. Math.-fys. Med. XII,12 (1940), Werke, 789–918.MathSciNetGoogle Scholar
  5. [Hir1]
    F. Hirzebruch, Überlagerungen der projektiven Ebene und Hilbertsche Modulflächen, L’Einseigment mathématique XXIV, fasc. 1–2 (1978), 63–78.MathSciNetGoogle Scholar
  6. [Hir2]
    F. Hirzebruch, The ring of Hilbert modular forms for real quadratic fields of small discriminant, Proc. Intern. Summer School on modular functions, Bonn 1976, 287–323.Google Scholar
  7. [HZ]
    F. Hirzebruch, D. Zagier, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Invent. Math. 36 (1976), 57–113.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [H98]
    R.-P. Holzapfel, Ball and surface arithmetics, Aspects of Mathematics E 29, Vieweg, Braunschweig-Wiesbaden, 1998.Google Scholar
  9. [HPV]
    R.-P. Holzapfel, Picard-Einstein metrics and class fields connected with Apollonius cycle, HU-Preprint, 98-15 (with appendices by A. Piñeiro, N. Vladov).Google Scholar
  10. [HV]
    R.-P. Holzapfel, N. Vladov, Quadric-line configurations degenerating plane Picard-Einstein metrics I–II, Sitzungsber. d. Berliner Math. Ges. 1997–2000, Berlin 2001, 79–142.Google Scholar
  11. [H02]
    R.-P. Holzapfel, Enumerative Geometry for complex geodesics on quasihyperbolic 4-spaces with cusps, Proc. Conf. Varna 2002, In: Geometry, Integrability and Quantization, ed. by M. Mladenov, L. Naber, Sofia 2003, 42–87.Google Scholar
  12. [P]
    H. Pinkham, Normal surface singularities with C*-action, Math. Ann. 227 (1977), 183–193.CrossRefMathSciNetGoogle Scholar
  13. [Ul]
    A.M. Uludag, Covering relations between ball-quotient orbifolds, Math. Ann. 328 no. 3 (2004), 503–523.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [vdG]
    G. van der Geer, Hilbert modular surfaces, Erg. Math. u. Grenzgeb., 3. Folge, 16, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1987.Google Scholar
  15. [Y-S]
    M-Yoshida, K. Sakurai, Fuchsian systems associated with \( \mathbb{P}^2 (\mathbb{F}_2 ) \)-arrangement, Siam J. Math. Anal. 20 no. 6 (1989), 1490–1499.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Rolf-Peter Holzapfel
    • 1
  1. 1.Institut für MathematikHumboldt-UniversitätBerlinGermany

Personalised recommendations