Skip to main content

Spatial Scaling of Effective Modulus and Correlation of Deformation Near the Critical Point of Fracturing

  • Chapter
Rock Damage and Fluid Transport, Part II

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 505 Accesses

Abstract

Many observations point to the lithosphere being metastable and close to a critical mechanical point. Exercises in modelling deformation, past or present, across subsurface reservoirs need to take account of this criticality in an efficient way. Using a renormalization technique, the spatial scaling of effective elastic modulus is derived for 2-D and 3-D bodies close to the critical point of through-going fracturing. The resulting exponent, dµ, of spatial scaling of effective modulus with size, L d µ, takes the values ~−2.5 and−4.2 in two- and three-dimensional space, respectively. The exponents are compatible with those for scaling of effective modulus with fracture density near the percolation threshold determined by other workers from numerical experiments; the high absolute values are also approximately consistent with empirical data from a) fluctuations in depth of a seismic surface; b)-‘1/k’ scaling of heterogeneities observed in one-dimensional well-log samples; c) spatial correlation of slip displacements induced by water injection. The effective modulus scaling modifies the spatial correlation of components of displacement or strain for a domain close to the critical point of fracturing. This correlation function has been used to geostatistically interpolate components of the strain tensor across subsurface reservoirs with the prime purpose of predicting fracture densities between drilled wells. Simulations of strain distributions appear realistic and can be conditioned to surface depths and observations at wells of fracture-related information such as densities and orientations, welltest permeabilities, changes in well-test permeabilities, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allègre, C.J., Le Mouël, J.L., and Provost, A. (1982), Scaling rules in rock fracture and possible implications for earthquake prediction, Nature 297, 47–49.

    Article  Google Scholar 

  • Allègre, C.J. and Le Mouël J.L. (1994), Introduction of scaling techniques in brittle fracture of rocks, Phys. Earth Planet Inter. 87, 85–93.

    Article  Google Scholar 

  • Arbabi, S. and Sahimi, M. (1988), Absence of universality in percolation models of disordered elastic media with central forces, J. Phys. A: Math. Gen. 21, L863–L868.

    Article  Google Scholar 

  • Bak, P., How Nature Works —the Science of Self-Organized Criticality (Oxford University Press, Oxford 1997), Binney, J.J., Dowrick, N.J., Fisher, A.J., and Newman, M.E.J. The Theory of Critical Phenomena —An Introduction to the Renormalization Group (Oxford University Press, Oxford 1992).

    Google Scholar 

  • Bruner, W.M. (1976), Comment on’ seismic velocities in dry and saturated cracked solids’ by O’Connell and Budiansky, J. Geophys. Res. 81, 2573–2576.

    Google Scholar 

  • Budiansky, B. and O’Connell, R.J. (1976), Elastic moduli of a cracked solid, Int. J. Solids Struct. 12, 81–97.

    Article  Google Scholar 

  • Chakrabarti, B.K. and Benguigui, L.G., Statistical Physics of Fracture and Breakdown in Disordered Systems (Oxford University Press, Oxford 1997).

    Google Scholar 

  • Cowie, P. A., Sornette, D., and Vanneste C. (1995), Multifractal scaling properties of a growing fault population, Geophys. J. Int. 122, 457–469.

    Article  Google Scholar 

  • Feng, S., Elasticity and percolation in scaling phenomena. In Disordered Systems (eds. R. Pynn and A. Skjeltorp), (NATO ASI Series B: Physics, Vol. 133. Plenum Press, New York and London 1985).

    Google Scholar 

  • Feng, S. and Sen, P.N. (1984), Percolation on elastic networks: New exponent and threshold, Phys. Rev. Lett. 52, 216.

    Article  Google Scholar 

  • Guyon, E., Hansen, A., Hinrischen, E., and Roux, S. (1989), Critical behaviors of central-force lattices, Physica A 157, 580–586.

    Article  Google Scholar 

  • Heffer, K.J., King, P.R., and Jones, A.D.W. (1999), Fracture modelling as part of integrated reservoir characterization, Society of Petroleum Engineers paper SPE 53347.

    Google Scholar 

  • Henyey, F.S. and Pomphrey, N. (1982), Self-consistent moduli of cracked solid, Geophys. Res. Lett. 9, 903–906.

    Google Scholar 

  • Huang, Y., Chandra, A., Jiang, Z.Q., Wei, X., and Hu, K.X. (1996), The numerical calculation of two-dimensional effective moduli for microcracked solids, J. Solids Struc. 33, 1575–1586.

    Article  Google Scholar 

  • Hudson, J. A. (1980). Overall properties of a cracked solid, Math. Proc. Cambridge Phil. Soc. 88, 371–384.

    Article  Google Scholar 

  • Hudson, J.A. (1981), Wave speeds and attenuation of elastic waves in material containing cracks. Geophys. J. Roy. Astr. Soc. 64, 133–150.

    Google Scholar 

  • Hudson, J.A. (1986), A higher-order approximation to the wave propagation constants for a cracked solid, Geophys. J. Roy. Astr. Soc. 87, 265–274.

    Google Scholar 

  • Jaeger, J.C. and Cook, N.G.W., Fundamentals of Rock Mechanics, Third Edition (Chapman and Hall, London, 1979).

    Google Scholar 

  • Kadanoff, L.P. (1966), The introduction of the idea that exponents could be derived from real-space scaling arguments, Physics 2, 263–273.

    Google Scholar 

  • Kallestad, E. (1998), Stochastic simulation of Gaussian vector fields, Diploma Thesis in the Faculty of Physics, Informatics and Mathematics, Norwegian University of Science and Technology, (NTNU) Trondheim.

    Google Scholar 

  • Kantor, Y. (1985), Elastic properties of random systems, In Scaling Phenomena in Disordered Systems (eds. R. Pynn and A. Skjeltorp), (NATO ASI Series B: Physics, vol. 133, Plenum Press, New York and London 1985).

    Google Scholar 

  • Kelvin, Lord (William Thomson) (1856), Elements of a mathematical theory of elasticity, Part 1, On stresses and strains, Phil. Trans. Roy. Soc. 166, 481–498.

    Google Scholar 

  • Kemeny, J. and Cook, N.G.W. (1986), Effective moduli, non-linear deformation and strength of a cracked, elastic solid, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 23, 2, 107–118.

    Article  Google Scholar 

  • King, P.R. (1989), The use of renormalization for calculating effective permeability, Trans. Por. Media 4, 37–58.

    Google Scholar 

  • Landau, L. D. and Lifshitz, E. M., Theory of Elasticity (Pergamon, New York 1975).

    Google Scholar 

  • Leary, P.C., Fractures and physical heterogeneity in crustal rock. In Heterogeneity in the Crust and Upper Mantle: Nature, Scaling and Seismic Properties (eds. Goff, J.A. and Holliger, K.) (Kluwer Academic, New York 2002).

    Google Scholar 

  • Lemieux, M.A., Breton, P., and Tremblay, A-M.S. (1985), J. Phys. (Paris) Lett. 46, L–1.

    Google Scholar 

  • Main, I.G. (1996), Statistical physics, seismogenesis and seismic hazard, Rev. Geophys. 34, 4, 433–462.

    Article  Google Scholar 

  • Main, I.G. and Al-Kindy, F.H. (2002), Entropy, energy and proximity to criticality in global earthquake populations, Geophys. Res. Lett. 29, 7, 25–1:4.

    Article  Google Scholar 

  • Main, I.G. and Burton, P.W. (1984), Information theory and the earthquake magnitude frequency distribution, Bull. Seismol. Soc. Am. 74, 1409–1426.

    Google Scholar 

  • Marsan, D. and Bean, C.J. (2003), Multifractal modelling and analyses of crustal heterogeneity. In Heterogeneity in the Crust and Upper Mantle: Nature, Scaling and Seismic Properties (eds. Goff, J.A. and Holliger, K.) (Kluwer Academic, New York 2002).

    Google Scholar 

  • Mehrabadi, M.M. and Cowin, S.C. (1990), Eigentensors of linear anisotropic elastic materials, Mech. Appl. Math. 43, Pt 1, 15–41.

    Article  Google Scholar 

  • O’Connell, R.J. and Budiansky, B. (1974), Seismic velocities in dry and saturated cracked solids, J Geophys. Res. 79, 5412–5426.

    Google Scholar 

  • Ouillon G., Castaing, C., and Sornette, D. (1996), Hierarchical geometry of faulting, J. Geophys. Res. 191, 5477–5487.

    Article  Google Scholar 

  • Rodin, G.J. and Hwang, Y.L. (1991), On the problem of linear elasticity for an infinite region containing a finite number of non-intersecting spherical inhomogeneities, Int. J. Sol. Struct. 27, 145–159.

    Article  Google Scholar 

  • Salganik, R.L. (1973), Mechanics of bodies with many cracks, Mech. Solids 8, 135–143.

    Google Scholar 

  • Sayers, C. and Kachanov, M. (1991), A simple technique for finding effective elastic constants of cracked solids for arbitrary crack orientation statistics, Int. J. Sol. Struct. 27, 6, 671–680.

    Article  Google Scholar 

  • Shen, L. and Li, J. (2004), A numerical simulation for effective elastic moduli of plates with various distributions and sizes of cracks, Int. J. Sol. Struct. 41, 7471–7492.

    Article  Google Scholar 

  • Shen, L. and Yi, S. (2001), An effective inclusion model for effective moduli of heterogeneous materials with ellipsoidal inhomogeneities, Int. J. Sol. Struct. 38, 5789–5805.

    Article  Google Scholar 

  • Smalley, J., Turcotte, D.L., and Solla, R.J. (1985), A renormalization group approach to the stick-slip behaviour of fault, J. Geophys. Res. 90, 1894–1900.

    Article  Google Scholar 

  • Starzec, P., Fehler, M., Baria, R., and Niitsuma, H. (2000), Spatial correlation of seismic slip at the HDR-Soultz geothermal site: Qualitative approach, Bull. Seismol. Soc. Am. 90, 6, 1528–1534.

    Article  Google Scholar 

  • Turcotte, D.L. (1986), Fractals and fragmentation, J. Geophys. Res. 91, 1921–1926.

    Google Scholar 

  • Wang, J., Fang, J., and Karihaloo, B.L. (2000), Asymptotic bounds on overall moduli of cracked bodies, Int. J. Sol. Struct. 37, 6221–6237.

    Article  Google Scholar 

  • Zimmerman, R.W. (1985), The effect of microcracks on the elastic moduli of brittle materials, J. Mater. Sci. Lett. 4, 1457–60.

    Article  Google Scholar 

  • Zimmerman, R.W., Compressibility of Sandstones. Developments in Petroleum Science. (Elsevier, Amsterdam 1991a).

    Google Scholar 

  • Zimmerman, R.W. (1991b), Elastic moduli of a solid containing spherical inclusions, Mech. Mater. 12, 17–24.

    Article  Google Scholar 

  • Zhou, M. and Sheng, P. (1993), Shear rigidity in 2D solid-liquid composites, Phys. Rev. Lett. 71, 26, 4358–4360.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag

About this chapter

Cite this chapter

Heffer, K., King, P. (2006). Spatial Scaling of Effective Modulus and Correlation of Deformation Near the Critical Point of Fracturing. In: Zang, A., Stephansson, O., Dresen, G. (eds) Rock Damage and Fluid Transport, Part II. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8124-0_10

Download citation

Publish with us

Policies and ethics