Skip to main content

The Glazier-Graner-Hogeweg Model: Extensions, Future Directions, and Opportunities for Further Study

  • Chapter

Part of the Mathematics and Biosciences in Interaction book series (MBI)

Abstract

One of the reasons for the enormous success of the Glazier-Graner-HogewegGlazier-Graner-Hogeweg Model (GGH) model is that it is a framework for model building rather than a specific biological model. Thus new ideas constantly emerge for ways to extend it to describe new biological (and non-biological) phenomena. The GGH model automatically integrates extensions with the whole body of prior GGH work, a flexibility which makes it unusually simple and rewarding to work with. In this chapter we discuss some possible future directions to extend GGH modeling. We discuss off-lattice extensions to the GGH model, which can treat fluids and solids, new classes of model objects, approaches to increasing computational efficiency, parallelization, and new model-development platforms that will accelerate our ability to generate successful models. We also discuss a non-GGH, but GGH-inspired, model of plant development by Merks and collaborators, which uses the Hamiltonian and Monte-Carlo approaches of the GGH but solves them using Finite Element (FE) methods.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-7643-8123-3_7
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-7643-8123-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Börner, A. Deutsch, H. Reichenbach, and M. Bär. Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions. Phys. Rev. Lett., 89:078101, 2002.

    CrossRef  Google Scholar 

  2. A. B. Bortz, M. H. Kalos, and J. L. Lebowitz. A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comp. Phys., 17:10, 1975.

    CrossRef  Google Scholar 

  3. F. P. Cercato, J. C. M. Mombach, and G. G. H. Cavalheiro. High performance simulations of the Cellular Potts model. In 20th International Symposium on High-Performance Computing in an Advanced Collaborative Environment, page 28, 2006.

    Google Scholar 

  4. N. Chen, J. A. Glazier, and M. S. Alber. A parallel implementation of the Cellular Potts model for simulation of cell-based morphogenesis. Lect. Notes Comput. Sci., 4173:58, 2006.

    MathSciNet  Google Scholar 

  5. D. Dan, C. Mueller, K. Chen, and J. A. Glazier. Solving the advection-diffusion equations in biological contexts using the Cellular Potts model. Phys. Rev. E, 72:041909, 2005.

    CrossRef  Google Scholar 

  6. R. O. Erickson. Symplastic growth and symplasmic transport. Plant Physiol., 82:1153, 1986.

    CrossRef  Google Scholar 

  7. K. A. Fichthorn and W. H. Weinberg. Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys., 95:1090, 1991.

    CrossRef  Google Scholar 

  8. M. C. Gibson, A. B. Patel, R. Nagpal, and N. Perrimon. The emergence of geometric order in proliferating metazoan epithelia. Nature, 442:1038, 2006.

    CrossRef  Google Scholar 

  9. D. T. Gillespie. A general method for numerically simulating the stochastic time evolution for coupled chemical reactions. J. Comp. Phys., 22:403, 1976.

    CrossRef  MathSciNet  Google Scholar 

  10. P. Hogeweg. Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. J. Theor. Biol., 203:317, 2000.

    CrossRef  Google Scholar 

  11. P. Hogeweg. Computing an organism: on the interface between informatic and dynamic processes. Biosystems, 64:97, 2002.

    CrossRef  Google Scholar 

  12. P. Hogeweg and N. Takeuchi. Multilevel selection in models of prebiotic evolution: compartments and spatial self-organization. Orig. Life Evol. Biosph., 33:375, 2003.

    CrossRef  Google Scholar 

  13. J. A. Izaguirre, R. Chaturvedi, C. Huang, T. Cickovski, J. Coffland, G. L. Thomas, G. Forgacs, M. S. Alber, H. G. E. Hentschel, S. A. Newman, and J. A. Glazier. Compucell, a multi-model framework for simulation of morphogenesis. Bioinformatics, 20:1129, 2004.

    CrossRef  Google Scholar 

  14. Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell, and J. P. Freyer. A multiscale model for avascular tumor growth. Biophys. J., 89:3884, 2005.

    CrossRef  Google Scholar 

  15. K.-C. Lee. Rejection-free Monte Carlo technique. J. Phys. A, 28:4835, 1995.

    CrossRef  MathSciNet  Google Scholar 

  16. J. A. Lockhart. An analysis of irreversible plant elongation. J. Theor. Biol., 8:264, 1965.

    CrossRef  Google Scholar 

  17. H. Meinhardt. Morphogenesis of lines and nets. Differentiation, 6:117, 1976.

    CrossRef  Google Scholar 

  18. R. M. H. Merks and J. A. Glazier. Dynamic mechanisms of blood vessel growth. Nonlinearity, 19, 2006.

    Google Scholar 

  19. R. M. H. Merks and J. A. Glazier. A cell-centered approach to developmental biology. Physica A, 352:113, 2005.

    CrossRef  Google Scholar 

  20. R. M. H. Merks, S. V. Brodsky, M. S. Goligorksy, S. A. Newman, and J. A. Glazier. Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol., 289:44, 2006.

    CrossRef  Google Scholar 

  21. T. Nagai and H. Honda. A dynamic cell model for the formation of epithelial tissues. Philos. Mag., 81:699, 2001.

    Google Scholar 

  22. M. E. J. Newman and G. T. Barkema. Monte Carlo methods in statistical physics. Oxford University Press, Oxford, 3rd edition, 1999.

    MATH  Google Scholar 

  23. J. H. Priestley. Studies in the physiology of cambial activity. II. The concept of sliding growth. New Physiol., 29:96, 1930.

    CrossRef  Google Scholar 

  24. W.-J. Rappel, A. Nicol, A. Sarkissian, H. Levine, and W. F. Loomis. Self-organized vortex state in two-dimensional Dictyostelium dynamics. Phys. Rev. Lett., 83:1247, 1999.

    CrossRef  Google Scholar 

  25. T. Rudge and J. Haseloff. A computational model of cellular morphogenesis in plants. Lect. Notes Comput. Sci., 3630:78, 2005.

    CrossRef  Google Scholar 

  26. N. J. Savill and J. A. Sherratt. Control of epidermal stem cell clusters by Notch-mediated lateral induction. Dev. Biol., 258:141, 2003.

    CrossRef  Google Scholar 

  27. J. Starruß, T. Bley, and A. Deutsch. A new mechanism for swarming pattern formation of Myxococcus xanthus. Preprint, 2007.

    Google Scholar 

  28. M. Zajac, G. L. Jones, and J. A. Glazier. Model of convergent extension in animal morphogenesis. Phys. Rev. Lett., 85:2022, 2000.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Balter, A., Merks, R.M.H., Popławski, N.J., Swat, M., Glazier, J.A. (2007). The Glazier-Graner-Hogeweg Model: Extensions, Future Directions, and Opportunities for Further Study. In: Anderson, A.R.A., Chaplain, M.A.J., Rejniak, K.A. (eds) Single-Cell-Based Models in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8123-3_7

Download citation