Abstract
This chapter discusses the history and development of what we propose to rename the Glazier-Graner-Hogeweg model (GGH model), starting with its ancestors, simple models of magnetism, and concluding with its current state as a powerful, cell-oriented method for simulating biological development and tissue physiology. We will discuss some of the choices and accidents of this development and some of the positive and negative consequences of the model’s pedigree.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular biology of the cell. Garland, New York, 2002.
H. Ando, Y. Sawada, H. Shimizu, and T. Sugiyama. Pattern formation in hydra tissue without developmental gradients. Dev. Biol., 133:405, 1989.
P. B. Armstrong and M. T. Armstrong. A role for fibronectin in cell sorting out. J. Cell. Sci., 69:179, 1984.
P. B. Armstrong and D. Parenti. Cell sorting in the presence of cytochalasin B. J. Cell Biol., 55:542, 1972.
J. Ashkin and E. Teller. Statistics of two-dimensional lattices with four components. Phys. Rev., 64:178, 1943.
S. G. Brush. History of the Lenz-Ising model. Rev. Mod. Phys., 39:883, 1967.
R. Chaturvedi, J. A. Izaguirre, C. Huang, T. Cickovski, P. Virtue, G. L. Thomas, G. Forgacs, M. S. Alber, S. A. Newman, and J. A. Glazier. Multi-model simulations of chicken limb morphogenesis. Lect. Notes Comput. Sci., 2659:39, 2003.
D. Dan, C. Mueller, K. Chen, and J. A. Glazier. Solving the advection-diffusion equations in biological contexts using the Cellular Potts model. Phys. Rev. E, 72:041909, 2005.
G. Forgacs, R. A. Foty, Y. Shafrir, and M. S. Steinberg. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J., 74:2227, 1998.
G. Forgacs and S. A. Newman. Biological physics of the developing embryo. Cambridge Univ. Press, Cambridge, 2005.
R. A. Foty, G. Forgacs, C. M. Pfleger, and M. S. Steinberg. Liquid properties of embryonic tissues: measurement of interfacial tensions. Phys. Rev. Lett., 72:2298, 1994.
R. A. Foty, C. M. Pfleger, G. Forgacs, and M. S. Steinberg. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development, 122:1611, 1996.
J. A. Glazier. Dynamics of cellular patterns. PhD thesis, University of Chicago, 1989.
J. A. Glazier. Grain growth in three dimensions depends on grain topology. Phys. Rev. Lett., 70:2170, 1993.
J. A. Glazier, M. P. Anderson, and G. S. Grest. Coarsening in the two-dimensional soap froth and the large-q Potts model: a detailed comparison. Philos. Mag. B, 62:615, 1990.
J. A. Glazier and F. Graner. Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E, 47:2128, 1993.
F. Graner and J. A. Glazier. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett., 69:2013, 1992.
P. Hogeweg. Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. J. Theor. Biol., 203:317, 2000.
P. Hogeweg. Computing an organism: on the interface between informatic and dynamic processes. Biosystems, 64:97, 2002.
P. Hogeweg. Computing an organism: on the interface between informatic and dynamic processes. In S. Kumar and P. J. Bentley, editors, On growth, form and computers, page 444. Elsevier, London, 2003.
P. Hogeweg and N. Takeuchi. Multilevel selection in models of prebiotic evolution: compartments and spatial self-organization. Orig. Life Evol. Biosph., 33:375, 2003.
E. A. Holm and C. C. Battaile. The computer simulation of microstructural evolution. JOM, 53:20, 2001.
E. A. Holm, J. A. Glazier, D. J. Srolovitz, and G. S. Grest. Effects of lattice anisotropy and temperature on domain growth in the two-dimensional Potts model. Phys. Rev. A, 43:2662, 1991.
E. Ising. Beitrag zur Theorie des Ferromagnetismus. Z. Physik., 31:253, 1925.
T. Itayama and Y. Sawada. Development of electrical activity in regenerating aggregates of hydra cells. J. Exp. Zool., 273:519, 1995.
J. A. Izaguirre, R. Chaturvedi, C. Huang, T. Cickovski, J. Coffland, G. L. Thomas, G. Forgacs, M. S. Alber, H. G. E. Hentschel, S. A. Newman, and J. A. Glazier. Compucell, a multi-model framework for simulation of morphogenesis. Bioinformatics, 20:1129, 2004.
Y. Jiang. Cellular pattern formation. PhD thesis, University of Notre Dame, 1998.
Y. Jiang and J. A. Glazier. Extended large-q Potts model simulation of foam drainage. Phil. Mag. Lett., 74:119, 1996.
S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol., 22:437, 1969.
C. E. Krill and L. Q. Chen. Computer simulation of 3-D grain growth using a phase-field model. Acta Mater., 50:3057, 2002.
A. F. M. Marée and P. Hogeweg. How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA, 98:3879, 2001.
A. F. M. Marée and P. Hogeweg. Modelling Dictyostelium discoideum morphogenesis: the culmination. Bull. Math. Biol., 64:327, 2002.
R. M. H. Merks and J. A. Glazier. A cell-centered approach to developmental biology. Physica A, 352:113, 2005.
R. M. H. Merks and J. A. Glazier. Dynamic mechanisms of blood vessel growth. Nonlinearity, 19:C1, 2006.
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. J. Chem. Phys., 21:1087, 1953.
J. C. Mombach, J. A. Glazier, R. C. Raphael, and M. Zajac. Quantitative comparison between differential adhesion models and cell sorting in the presence and absence of fluctuations. Phys. Rev. Lett., 75:2244, 1995.
J. C. M. Mombach, R. M. C. de Almeida, and J. R. Iglesias. Mitosis and growth in biological tissues. Phys. Rev. E, 48:598, 1993.
L. Onsager. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev., 65:117, 1944.
N. J. Popławski, M. Swat, J. S. Gens, and J. A. Glazier. Adhesion between cells, diffusion of growth factors, and elasticity of the AER produce the paddle shape of the chick limb. Physica A, 373:521, 2007.
R. B. Potts. PhD thesis, University of Oxford, 1951.
R. B. Potts. Some generalized order-disorder transformations. Proc. Camb. Phil. Soc., 48:106, 1952.
J. P. Rieu, A. Upadhyaya, J. A. Glazier, N. B. Ouchi, and Y. Sawada. Diffusion and deformations of single hydra cells in cellular aggregates. Biophys. J., 79:1903, 2000.
E. Ruoslahti. Stretching is good for a cell. Science, 276:1345, 1997.
S. A. Safran, P. S. Sahni, and G. S. Grest. Kinetics of ordering in two dimensions. I. Model systems. Phys. Rev. B, 28:2693, 1983.
P. S. Sahni, G. S. Grest, M. P. Anderson, and D. J. Srolovitz. Kinetics of the q-state Potts model in two dimensions. Phys. Rev. Lett., 50:263, 1983.
P. S. Sahni, D. J. Srolovitz, G. S. Grest, M. P. Anderson, and S. A. Safran. Kinetics of ordering in two dimensions. II. Quenched systems. Phys. Rev. B, 28:2705, 1983.
M. Sato, H. R. Bode, and Y. Sawada. Patterning processes in aggregates of hydra cells visualized with the monoclonal antibody, Ts19. Dev. Biol., 141:412, 1990.
M. Sato and Y. Sawada. Regulation in the numbers of tentacles of aggregated hydra cells. Dev. Biol., 133:119, 1989.
M. Sato, H. Tashiro, A. Oikawa, and Y. Sawada. Patterning in hydra cell aggregates without the sorting of cells from different axial origins. Dev. Biol., 151:111, 1992.
N. J. Savill and P. Hogeweg. Modelling morphogenesis: from single cells to crawling slugs. J. Theor. Biol., 184:229, 1997.
N. J. Savill and J. A. Sherratt. Control of epidermal stem cell clusters by Notch-mediated lateral induction. Dev. Biol., 258:141, 2003.
G. Serini, D. Ambrosi, E. Giraudo, A. Gamba, L. Preziosi, and F. Bussolino. Modeling the early stages of vascular network assembly. EMBO J., 22:1771, 2003.
H. Shimizu, Y. Sawada, and T. Sugiyama. Minimum tissue size required for hydra regeneration. Dev. Biol., 155:287, 1993.
M. S. Steinberg. Reconstruction of tissues by dissociated cells. some morphogenetic movements and the sorting out of embryonic cells may have a common explanation. Science, 141:401, 1963.
M. S. Steinberg. The problem of adhesive selectivity in cellular interactions. In M. Locke, editor, Cellular membranes in development, page 321. Academic, New York, 1964.
M. S. Steinberg. Does differential adhesion govern self-assembly processes in histogenesis? equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J. Exp. Zool., 173:395, 1970.
M. S. Steinberg and M. Takeichi. Experimental specification of cell sorting, tissue spreading and specific spatial patterning by quantitative differences in cadherin expression. Proc. Natl. Acad. Sci. USA, 91:206, 1994.
A. Szolnoki and G. Szabo. Vertex dynamics during domain growth in three-state models. Phys. Rev. E, 70:027101, 2004.
U. Technau and T. W. Holstein. Cell sorting during the regeneration of hydra from reaggregated cells. Dev. Biol., 151:117, 1992.
G. L. Thomas, R. M. C. de Almeida, and F. Graner. Coarsening of three-dimensional grains in crystals, or bubbles in dry foams, tends towards a universal, statistically scale-invariant regime. Phys. Rev. E, 74:021407, 2006.
V. Tikare, E. A. Holm, D. Fan, and L. Q. Chen. Comparison of phase-field and Potts models for coarsening processes. Acta Mater., 47:363, 1998.
S. Turner and J. A. Sherratt. Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J. Theor. Biol., 216:85, 2002.
S. Turner, J. A. Sherratt, K. J. Painter, and N. J. Savill. From a discrete to a continuous model of biological cell movement. Phys. Rev. E, 69:021910, 2004.
A. Upadhyaya. Thermodynamic and fluid properties of cells, tissues and membranes. PhD thesis, University of Notre Dame, 2000.
J. von Neumann. Metal interfaces. American Society for Metals, Cleveland, 1952.
D. Weaire and J. A. Glazier. Modelling grain growth and soap froth coarsening: past, present and future. Mater. Sci. Forum, 94–96:27, 1992.
D. Weaire and J. P. Kermode. Computer simulation of a two-dimensional soap froth. I. method and motivation. Phil. Mag. B, 48:245, 1983.
D. Weaire and J. P. Kermode. Computer simulation of a two-dimensional soap froth. II. analysis of results. Phil. Mag. B, 50:379, 1984.
J. Wejchert, D. Weaire, and J. P. Kermode. Monte Carlo simulation of the evolution of a two-dimensional soap froth. Phil. Mag. B, 53:15, 1986.
S.-K. Wong. A cursory study of thermodynamic and mechanical properties of Monte-Carlo simulations of the Ising model. PhD thesis, University of Notre Dame, 2005.
F. Y. Wu. The Potts model. Rev. Mod. Phys., 54:235, 1982.
K. Yosida. Theory of magnetism. Springer-Verlag, Heidelberg, 2006.
W. Zeng, G. L. Thomas, and J. A. Glazier. A novel mechanism for biological cell clustering. Physica A, 341:482, 2004.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Birkhäuser Verlag Basel/Switzerland
About this chapter
Cite this chapter
Glazier, J.A., Balter, A., Popławski, N.J. (2007). Magnetization to Morphogenesis: A Brief History of the Glazier-Graner-Hogeweg Model. In: Anderson, A.R.A., Chaplain, M.A.J., Rejniak, K.A. (eds) Single-Cell-Based Models in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8123-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-7643-8123-3_4
Publisher Name: Birkhäuser Basel
Print ISBN: 978-3-7643-8101-1
Online ISBN: 978-3-7643-8123-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)