Skip to main content

Mother Nature’s gifts to diseases of man: the impact of natural products on anti-infective, anticholestemics and anticancer drug discovery

  • Chapter
Natural Compounds as Drugs Volume I

Part of the book series: Progress in Drug Research ((PDR,volume 65))

Abstract

This chapter is designed to demonstrate that compounds derived from nature are still in the forefront of drug discovery in diseases such as microbial and parasitic infections, carcinomas of many types and control of cholesterol/lipids in man. In each disease area we have provided short discussions of past, present and future agents, in general only considering compounds currently in clinical Phase II or later, that were/are derived from nature’s chemical skeletons. Finishing with a discussion of the current and evolving role(s) of microbes (bacteria and fungi) in the production of old and new agents ostensibly produced by higher organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous (1998) A pictorial history of herbs in medicine and pharmacy. Herbalgram 42: 33–47

    Google Scholar 

  2. Borchardt JK (2002) The beginnings of drug therapy: Ancient mesopotamian medicine. Drug News Perspect 15: 187–192

    PubMed  Google Scholar 

  3. Chang HM, But PPH (1986) Pharmacology and applications of Chinese Materia Medica. World Scientific Publishing, Singapore

    Google Scholar 

  4. Huang KC (1999) The pharmacology of Chinese herbs. CRC Press, Boca Raton, FL

    Google Scholar 

  5. Dev S (1999) Ancient-modern concordance in Ayurvedic plants: Some examples. Environ Health Persp 107: 783–789

    CAS  Google Scholar 

  6. Kapoor LD (1990) CRC handbook of ayurvedic medicinal plants. CRC Press, Boca Raton, FL

    Google Scholar 

  7. NLM, http://www.nlm.nih.gov/hmd/

    Google Scholar 

  8. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the period 01/1981-06/2006. J Nat Prod 70: 461–477

    PubMed  CAS  Google Scholar 

  9. Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66: 1022–1037

    PubMed  CAS  Google Scholar 

  10. Butler MS (2005) Natural products to drugs: Natural product derived compounds in clinical trials. Nat Prod Rep 22: 162–195

    PubMed  CAS  Google Scholar 

  11. Chin YW, Balunas MJ, Chai HB, Kinghorn AD (2006) Drug discovery from natural sources. AAPS J 8: E239–253

    PubMed  CAS  Google Scholar 

  12. Butler MS (2004) The role of natural products in drug discovery. J Nat Prod 67: 2141–2153

    PubMed  CAS  Google Scholar 

  13. Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4: 206–220

    PubMed  CAS  Google Scholar 

  14. Sneader W (2005) Drug discovery: A history. John Wiley & Sons, Chichester, UK

    Google Scholar 

  15. Mateles RI (1998) Penicillin: A paradigm for biotechnology. Candida Corporation, Chicago, IL

    Google Scholar 

  16. Newton GGF, Abraham EP (1956) Isolation of cephalosporin C, a penicillin-like antibiotic containing D-α-aminoadipic acid. Biochem J 62: 651–158

    PubMed  CAS  Google Scholar 

  17. Abraham EP, Newton GGF (1961) The structure of cephalosporin C. Biochem J 79: 377–393

    PubMed  CAS  Google Scholar 

  18. Imada A, Kitano K, Kintaka K, Muroi M, Asai M (1981) Sulfazecin and isosulfazecin, novel B-lactam antibiotics of bacterial origin. Nature 289: 590–591

    PubMed  CAS  Google Scholar 

  19. Sykes RB, Cimarusti CM, Bonner DP, Bush K, Floyd DM, Georgopapadakou NH, Koster WH, Liu WC, Parker WL, Principe PA et al (1981) Monocyclic B-lactam antibiotics produced by bacteria. Nature 291: 489–491

    PubMed  CAS  Google Scholar 

  20. Mauger AB, Lackner H (2005) The actinomycins. In: GM Cragg, DGI Kingston, DJ Newman (eds): Anticancer agents from natural products. Taylor and Francis, Boca Raton, Fl, 281–297

    Google Scholar 

  21. Weber JM, Leung JO, Maine GT, Potenz RHB, Paulus TJ, DeWitt JP (1990) Organization of a cluster of erythromycin genes in Saccharopolyspora erythraea. J Bacteriol 172: 2372–2383

    PubMed  CAS  Google Scholar 

  22. Katz L, Donadio S (1993) Polyketide synthesis: Prospects for hybrid antibiotics. Ann Revs Microbiol 47: 875–912

    CAS  Google Scholar 

  23. Demain AL (2006) From natural products discovery to commercialization: A success story. J Ind Microbiol Biotechnol 33: 486–495

    PubMed  CAS  Google Scholar 

  24. Baltz RH, Miao V, Wrigley SK (2005) Natural products to drugs: Daptomycin and related lipopeptide antibiotics. Nat Prod Rep 22: 714–741

    Google Scholar 

  25. von Nussbaum F, Brands M, Hinzen B, Weigand S, Habich D (2006) Antibacterial natural products in medicinal chemistry —exodus or revival? Angew Chemie Int Ed 45: 5072–5129

    Google Scholar 

  26. Keating GM, Perry CM (2005) Ertapenem: A review of its use in the treatment of bacterial infections. Drugs 65: 2151–2178

    PubMed  CAS  Google Scholar 

  27. Shah PM, Isaacs RD (2003) Ertapenem, the first of a new group of carbapenems. J Antimicrob Chemother 52: 538–542

    PubMed  CAS  Google Scholar 

  28. Nilius AM, Ma Z (2002) Ketolides: The future of the macrolides? Curr Opin Pharmacol 2: 493–500

    PubMed  CAS  Google Scholar 

  29. Nguyen M, Chung EP (2005) Telithromycin: The first ketolide antimicrobial. Clin Ther 27: 1144–1163

    PubMed  CAS  Google Scholar 

  30. Ubukata K, Hikida M, Yoshida M, Nishiki K, Furukawa Y, Tashiro K, Konno M, Mitsuhashi S (1990) In vitro activity of LJC10,627, a new carbapenem antibiotic with high stability to dehydropeptidase I. Antimicrob Agents Chemother 34: 994–1000

    PubMed  CAS  Google Scholar 

  31. Perry CM, Ibbotson T (2002) Biapenem. Drugs 62: 2221–2234

    PubMed  CAS  Google Scholar 

  32. Kahne D, Leimkuhler C, Lu W, Walsh C (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105: 425–448

    PubMed  CAS  Google Scholar 

  33. Iso Y, Irie T, Iwaki T, Kii M, Sendo Y, Motokawa K, Nishitani Y (1996) Synthesis and modification of a novel 1 beta-methyl carbapenem antibiotic, S-4661. J Antibiot 49: 478–484

    PubMed  CAS  Google Scholar 

  34. Anderson DL (2006) Doripenem. Drugs Today (Barc) 42: 399–404

    CAS  Google Scholar 

  35. Sum PE, Lee VJ, Testa RT, Hlavka JJ, Ellestad GA, Bloom JD, Gluzman Y, Tally FP (1994) Glycylcyclines. 1. A new generation of potent antibacterial agents through modification of 9-aminotetracyclines. J Med Chem 37: 184–188

    PubMed  CAS  Google Scholar 

  36. Abou-Gharbia M (2002) In: B. Sener (ed): Biodiversity: Biomolecular aspects of biodiversity and innovation utilization. Kluwer Academic, New York, 63–70

    Google Scholar 

  37. Jones CH, Petersen PJ (2006) Tigecycline: First class glycylcycline a new choice for empiric therapy. Drug Discov Today: Therap Strat 3: 137–144

    Google Scholar 

  38. Stein GE, Craig WA (2006) Tigecycline: A critical analysis. Clin Infect Dis 43: 518–524

    PubMed  CAS  Google Scholar 

  39. Sum PE (2006) Case studies in current drug development: ‘glycylcyclines’. Curr Opin Chem Biol 10: 374–379

    PubMed  CAS  Google Scholar 

  40. Page MG (2006) Anti-MRSA beta-lactams in development. Curr Opin Pharmacol 6: 480–485

    PubMed  CAS  Google Scholar 

  41. Ishikawa T, Matsunaga N, Tawada H, Kuroda N, Nakayama Y, Ishibashi Y, Tomimoto M, Ikeda Y, Tagawa Y, Iizawa Y et al (2003) TAK-599, a novel N-phosphono type prodrug of anti-MRSA cephalosporin T-91825: synthesis, physicochemical and pharmacological properties. Bioorg Med Chem 11: 2427–2437

    PubMed  CAS  Google Scholar 

  42. Kawamoto I, Shimoji Y, Kanno O, Kojima K, Ishikawa K, Matsuyama E, Ashida Y, Shibayama T, Fukuoka T, Ohya S (2003) Synthesis and structure-activity relationships of novel parenteral carbapenems, CS-023 (R-115685) and related compounds containing an amidine moiety. J Antibiot 56: 565–579

    PubMed  CAS  Google Scholar 

  43. Kobayashi R, Konomi M, Hasegawa K, Morozumi M, Sunakawa K, Ubukata K (2005) In vitro activity of tebipenem, a new oral carbapenem antibiotic, against penicillin-nonsusceptible Streptococcus pneumoniae. Antimicrob Agents Chemother 49: 889–894

    PubMed  CAS  Google Scholar 

  44. Pace JL, Yang G (2006) Glycopeptides: Update on an old successful antibiotic class. Biochem Pharmacol 71: 968–980

    PubMed  CAS  Google Scholar 

  45. Van Bambeke F (2006) Glycopeptides and glycodepsipeptides in clinical development: A comparative review of their antibacterial spectrum, pharmacokinetics and clinical efficacy. Curr Opin Investig Drugs 7: 740–749

    PubMed  Google Scholar 

  46. Malabarba A, Ciabatti R, Kettenring J, Ferrari P, Scotti R, Goldstein BP, Denaro M (1994) Amides of de-acetylglucosaminyl-deoxy teicoplanin active against highly glycopeptide-resistant enterococci. Synthesis and antibacterial activity. J Antibiot 47: 1493–1506

    PubMed  CAS  Google Scholar 

  47. Leadbetter MR, Adams SM, Bazzini B, Fatheree PR, Karr DE, Krause KM, Lam BM, Linsell MS, Nodwell MB, Pace JL (2004) Hydrophobic vancomycin derivatives with improved ADME properties: Discovery of telavancin (TD-6424). J Antibiot 57: 326–336

    PubMed  CAS  Google Scholar 

  48. Cooper RD, Snyder NJ, Zweifel MJ, Staszak MA, Wilkie SC, Nicas TI, Mullen DL, Butler TF, Rodriguez MJ, Huff BE et al (1996) Reductive alkylation of glycopeptide antibiotics: synthesis and antibacterial activity. J Antibiot 49: 575–581

    PubMed  CAS  Google Scholar 

  49. Katz L, Ashley G (2005) Translation and protein synthesis: Macrolides. Chem Rev 105: 499–528

    PubMed  CAS  Google Scholar 

  50. Azoulay-Dupuis E, Mohler J, Bedos JP, Barau C, Fantin B (2006) Efficacy of cethromycin, a new ketolide, against Streptococcus pneumoniae susceptible or resistant to erythromycin in a murine pneumonia model. Antimicrob Agents Chemother 50: 3033–3038

    PubMed  CAS  Google Scholar 

  51. Or YS, Clark RF, Wang S, Chu DT, Nilius AM, Flamm RK, Mitten M, Ewing P, Alder J, Ma Z (2000) Design, synthesis, and antimicrobial activity of 6-O-substituted ketolides active against resistant respiratory tract pathogens. J Med Chem 43: 1045–1049

    PubMed  CAS  Google Scholar 

  52. Wang G, Niu D, Qiu YL, Phan LT, Chen Z, Polemeropoulos A, Or YS (2004) Synthesis of novel 6, 11-O-bridged bicyclic ketolides via a palladium-catalyzed bis-allylation. Org Lett 6: 4455–4458

    PubMed  CAS  Google Scholar 

  53. Xiong L, Korkhin Y, Mankin AS (2005) Binding site of the bridged macrolides in the Escherichia coli ribosome. Antimicrob Agents Chemother 49: 281–288

    PubMed  CAS  Google Scholar 

  54. Floss HG, Yu T-W (2005) Rifamycin —mode of action, resistance, and biosynthesis. Chem Rev 105: 621–632

    PubMed  CAS  Google Scholar 

  55. Yamane T, Hashizume T, Yamashita K, Konishi E, Hosoe K, Hidaka T, Watanabe K, Kawaharada H, Yamamoto T, Kuze F (1993) Synthesis and biological activity of 3′-hydroxy-5′-aminobenzoxazinorifamycin derivatives. Chem Pharm Bull (Tokyo) 41: 148–155

    CAS  Google Scholar 

  56. Rothstein DM, Shalish C, Murphy CK, Sternlicht A, Campbell LA (2006) Development potential of rifalazil and other benzoxazinorifamycins. Expert Opin Investig Drugs 15: 603–623

    PubMed  CAS  Google Scholar 

  57. Suchland RJ, Bourillon A, Denamur E, Stamm WE, Rothstein DM (2005) Rifampinresistant RNA polymerase mutants of Chlamydia trachomatis remain susceptible to the ansamycin rifalazil. Antimicrob Agents Chemother 49: 1120–1126

    PubMed  CAS  Google Scholar 

  58. Ciabatti R, Kettenring JK, Winters G, Tuan G, Zerilli L, Cavalleri B (1989) Ramoplanin (A-16686), a new glycolipodepsipeptide antibiotic. III. Structure elucidation. J Antibiot 42: 254–267

    PubMed  CAS  Google Scholar 

  59. Walker S, Chen L, Hu Y, Rew Y, Shin D, Boger DL (2005) Chemistry and biology of ramoplanin: A lipoglycodepsipeptide with potent antibiotic activity. Chem Rev 105: 449–476

    PubMed  CAS  Google Scholar 

  60. Freeman J, Baines SD, Jabes D, Wilcox MH (2005) Comparison of the efficacy of ramoplanin and vancomycin in both in vitro and in vivo models of clindamycin-induced Clostridium difficile infection. J Antimicrob Chemother 56: 717–725

    PubMed  CAS  Google Scholar 

  61. Sunenshine RH, McDonald LC (2006) Clostridium difficile-associated disease: New challenges from an established pathogen. Cleve Clin J Med 73: 187–197

    PubMed  Google Scholar 

  62. Breukink E, de Kruijff B (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discov 5: 321–332

    PubMed  CAS  Google Scholar 

  63. Fang X, Tiyanont K, Zhang Y, Wanner J, Boger D, Walker S (2006) The mechanism of action of ramoplanin and enduracidin. Mol BioSyst 2: 69–76

    PubMed  CAS  Google Scholar 

  64. Tiyanont K, Doan T, Lazarus MB, Fang X, Rudner DZ, Walker S (2006) Imaging peptidoglycan biosynthesis in Bacillus subtilis with fluorescent antibiotics. Proc Natl Acad Sci USA 103: 11033–11038

    PubMed  CAS  Google Scholar 

  65. Pankuch GA, Lin G, Hoellman DB, Good CE, Jacobs MR, Appelbaum PC (2006) Activity of retapamulin against Streptococcus pyogenes and Staphylococcus aureus evaluated by agar dilution, microdilution, E-test, and disk diffusion methodologies. Antimicrob Agents Chemother 50: 1727–1730

    PubMed  CAS  Google Scholar 

  66. Yan K, Madden L, Choudhry AE, Voigt CS, Copeland RA, Gontarek RR (2006) Biochemical characterization of the interactions of the novel pleuromutilin derivative retapamulin with bacterial ribosomes. Antimicrob Agents Chemother 50: 3875–3881

    PubMed  CAS  Google Scholar 

  67. Schlunzen F, Pyetan E, Fucini P, Yonath A, Harms JM (2004) Inhibition of peptide bond formation by pleuromutilins: The structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol Microbiol 54: 1287–1294

    PubMed  Google Scholar 

  68. Hochlowski JE, Swanson SJ, Ranfranz LM, Whittern DN, Buko AM, McAlpine JB (1987) Tiacumicins, a novel complex of 18-membered macrolides. II. Isolation and structure determination. J Antibiot 40: 575–588

    PubMed  CAS  Google Scholar 

  69. Theriault RJ, Karwowski JP, Jackson M, Girolami RL, Sunga GN, Vojtko CM, Coen LJ (1987) Tiacumicins, a novel complex of 18-membered macrolide antibiotics. I. Taxonomy, fermentation and antibacterial activity. J Antibiot 40: 567–574

    PubMed  CAS  Google Scholar 

  70. Coronelli C, White RJ, Lancini GC, Parenti F (1975) Lipiarmycin, a new antibiotic from Actinoplanes. II. Isolation, chemical, biological and biochemical characterization. J Antibiot 28: 253–259

    PubMed  CAS  Google Scholar 

  71. Omura S, Imamura N, Oiwa R, Kuga H, Iwata R, Masuma R (1986) Clostomicins, new antibiotics produced by Micromonospora echinospora subsp. armeniaca subsp. nov. I. Production, isolation, and physico-chemical and biological properties. J Antibiot 39: 1407–1412

    PubMed  CAS  Google Scholar 

  72. Swanson RN, Hardy DJ, Shipkowitz NL, Hanson CW, Ramer NC, Fernandes PB, Clement JJ (1991) In vitro and in vivo evaluation of tiacumicins B and C against Clostridium difficile. Antimicrob Agents Chemother 35: 1108–1111

    PubMed  CAS  Google Scholar 

  73. Ackermann G, Loffler B, Adler D, Rodloff AC (2004) In vitro activity of OPT-80 against Clostridium difficile. Antimicrob Agents Chemother 48: 2280–2282

    PubMed  CAS  Google Scholar 

  74. Credito KL, Appelbaum PC (2004) Activity of OPT-80, a novel macrocycle, compared with those of eight other agents against selected anaerobic species. Antimicrob Agents Chemother 48: 4430–4434

    PubMed  CAS  Google Scholar 

  75. Finegold SM, Molitoris D, Vaisanen ML, Song Y, Liu C, Bolanos M (2004) In vitro activities of OPT-80 and comparator drugs against intestinal bacteria. Antimicrob Agents Chemother 48: 4898–4902

    PubMed  CAS  Google Scholar 

  76. Sergio S, Pirali G, White R, Parenti F (1975) Lipiarmycin, a new antibiotic from Actinoplanes III. Mechanism of action. J Antibiot 28: 543–549

    PubMed  CAS  Google Scholar 

  77. Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19: 491–511

    PubMed  CAS  Google Scholar 

  78. Marr AK, Gooderham WJ, Hancock RE (2006) Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Curr Opin Pharmacol 6: 468–472

    PubMed  CAS  Google Scholar 

  79. MIGENIX Annual Report (2006). Available at http://www.migenix.com

    Google Scholar 

  80. Sader HS, Fedler KA, Rennie RP, Stevens S, Jones RN (2004) Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob Agents Chemother 48: 3112–3118

    PubMed  CAS  Google Scholar 

  81. Mechlinski W, Schaffner CP, Ganis P, Avitabile G (1970) Structure and absolute configuration of the polyene macrolide antibiotic amphotericin B. Tetrahedron Lett 11: 3873–3876

    Google Scholar 

  82. Borowski E, Zielinski J, Ziminski T, Falowski L, Kolodziejczyk P, Golik J, Jereczek E (1970) Chemical studies with amphotericin B. Tetrahedron Lett 11: 3909–3914

    Google Scholar 

  83. Chong CN, Rickards RW (1970) Macrolide antibiotic studies. XVI. The structure of nystatin. Tetrahedron Lett 11: 5145–5148

    Google Scholar 

  84. Borowski E, Zielinski J, Falowski L, Ziminski T, Golik J, Kolodziejczyk P, Jereczek E, Gdulewicz M, Shenin Y, Kotienko T (1971) The complete structure of the polyene macrolide antibiotic nystatin A1 Tetrahedron Lett 12: 685–690

    Google Scholar 

  85. Pandey RC, Rinehart KL (1976) Polyene antibiotics. 7. C-13 Nuclear magnetic resonance evidence for cyclic hemiketals in polyene antibiotics amphotericin-B, nystatin-A1, tetrin-A, tetrin-B, lucensomycin, and pimaricin. J Antibiot 29: 1035–1042

    PubMed  CAS  Google Scholar 

  86. Grove JF, MacMillan J, Mulholland TPC, Rogers MAT (1952) Griseofulvin. Part IV. Structure. J Chem Soc: 3977–3987

    Google Scholar 

  87. Morrison VA (2006) Echinocandin antifungals: Review and update. Expert Rev Anti Infect Ther 4: 325–342

    PubMed  CAS  Google Scholar 

  88. Turner MS, Drew RH, Perfect JR (2006) Emerging echinocandins for treatment of invasive fungal infections. Exp Opin Emerg Drugs 11: 231–250

    CAS  Google Scholar 

  89. McCormack PL, Perry CM (2005) Caspofungin: A review of its use in the treatment of fungal infections. Drugs 65: 2049–2068

    PubMed  CAS  Google Scholar 

  90. Chandrasekar PH, Sobel JD (2006) Micafungin: A new echinocandin. Clin Infect Dis 42: 1171–1178

    PubMed  CAS  Google Scholar 

  91. Vazquez JA, Sobel JD (2006) Anidulafungin: A novel echinocandin. Clin Infect Dis 43: 215–222

    PubMed  Google Scholar 

  92. Aperis G, Myriounis N, Spanakis EK, Mylonakis E (2006) Developments in the treatment of candidiasis: More choices and new challenges. Expert Opin Investig Drugs 15: 1319–1336

    PubMed  CAS  Google Scholar 

  93. Andes D, Marchillo K, Lowther J, Bryskier A, Stamstad T, Conklin R (2003) In vivo pharmacodynamics of HMR 3270, a glucan synthase inhibitor, in a murine candidiasis model. Antimicrob Agents Chemother 47: 1187–1192

    PubMed  CAS  Google Scholar 

  94. Warn PA, Sharp A, Morrissey G, Denning DW (2005) Activity of aminocandin (IP960) compared with amphotericin B and fluconazole in a neutropenic murine model of disseminated infection caused by a fluconazole-resistant strain of Candida tropicalis. J Antimicrob Chemother 56: 590–593

    PubMed  CAS  Google Scholar 

  95. Bruzzese T, Rimaroli C, Bonabello A, Ferrari E, Signorini M (1996) Amide derivatives of patricin A with potent antifungal activity. Eur J Med Chem 31: 965–972

    CAS  Google Scholar 

  96. Kantarcioglu AS, Yucel A, Vidotto V (2003) In vitro activity of a new polyene SPK-843 against Candida spp, Cryptococcus neoformans and Aspergillus spp clinical isolates. J Chemother 15: 296–298

    PubMed  CAS  Google Scholar 

  97. Kasanah N, Hamann MT (2005) SPK-843 (Aparts/Kaken). Curr Opin Investig Drugs 6: 845–853

    PubMed  CAS  Google Scholar 

  98. Kaken Pharmaceutical Annual Report (2006) Available at: http://www.kaken.co/jp

    Google Scholar 

  99. Aparts BV Web Site (2006) Available at http://www.apartsbv.com.

    Google Scholar 

  100. Kaufman TS, Rúveda EA (2005) The quest for quinine: Those who won the battles and those who won the war. Angew Chem Int Ed Engl 44: 854–885

    PubMed  CAS  Google Scholar 

  101. Tan RX, Zheng WF, Tang HQ (1998) Biologically active substances from the genus Artemisia. Planta Med 64: 295–302

    CAS  Google Scholar 

  102. Newman JD, Marshall J, Chang M, Nowoozi F, Paradise E, Pitera D, Newman KL, Keasling JD (2006) High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotecnol Bioeng 95: 684–691

    CAS  Google Scholar 

  103. Boatin BA, Richards FO Jr (2006) Control of onchoceriasis. Adv Parasitol 61: 349–394

    PubMed  Google Scholar 

  104. Sanofi-Aventis Annual Report (2005) Available at http://www.sanofiaventis.com

    Google Scholar 

  105. Didier PJ, Phillips JN, Kuebler DJ, Nasr M, Brindley PJ, Stovall ME, Bowers LC, Didier ES (2006) Antimicrosporidial activities of fumagillin, TNP-470, ovalicin, and ovalicin derivatives in vitro and in vivo. Antimicrob Agents Chemother 50: 2146–2155

    PubMed  CAS  Google Scholar 

  106. Didier ES (2005) Microsporidiosis: An emerging and opportunistic infection in humans and animals. Acta Trop 94: 61–76

    PubMed  CAS  Google Scholar 

  107. Griffith EC, Su Z, Niwayama S, Ramsay CA, Chang YH, Liu JO (1998) Molecular recognition of angiogenesis inhibitors fumagillin and ovalicin by methionine aminopeptidase 2. Proc Natl Acad Sci USA 95: 15183–15188

    PubMed  CAS  Google Scholar 

  108. Upadhya R, Zhang HS, Weiss LM (2006) System for expression of microsporidian methionine amino peptidase type 2 (MetAP2) in the yeast Saccharomyces cerevisiae. Antimicrob Agents Chemother 50: 3389–3395

    PubMed  CAS  Google Scholar 

  109. Peterson RT (2006) A noncanonical path to mechanism of action. Chem Biol 13: 924–926

    PubMed  CAS  Google Scholar 

  110. Zhang Y, Yeh JR, Mara A, Ju R, Hines JF, Cirone P, Griesbach HL, Schneider I, Slusarski DC, Holley SA et al (2006) A chemical and genetic approach to the mode of action of fumagillin. Chem Biol 13: 1001–1009

    PubMed  CAS  Google Scholar 

  111. Haynes RK (2006) From artemisinin to new artemisinin antimalarials: Biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. Curr Top Med Chem 6: 509–537

    PubMed  CAS  Google Scholar 

  112. Haynes RK, Fugmann B, Stetter J, Rieckmann K, Heilmann HD, Chan HW, Cheung MK, Lam WL, Wong HN, Croft SL et al (2006) Artemisone —a highly active antimalarial drug of the artemisinin class. Angew Chem Int Ed 45: 2082–2088

    CAS  Google Scholar 

  113. Eckstein-Ludwig U, Webb RJ, Van Goethem ID, East JM, Lee AG, Kimura M, O’Neill PM, Bray PG, Ward SA, Krishna S (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424: 957–961

    PubMed  CAS  Google Scholar 

  114. Jambou R, Legrand E, Niang M, Khim N, Lim P, Volney B, Ekala MT, Bouchier C, Esterre P, Fandeur T et al (2005) Resistance of Plasmodium falciparum field isolates to in vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet 366: 1960–1963

    PubMed  CAS  Google Scholar 

  115. Uhlemann AC, Cameron A, Eckstein-Ludwig U, Fischbarg J, Serovich P, Zuniga FA, East M, Lee A, Brady L, Haynes RK et al (2005) A single amino acid residue can determine the sensitivity of SERCAs to artemisinins. Nat Struct Mol Biol 12: 628–629

    PubMed  CAS  Google Scholar 

  116. Golenser J, Waknine JH, Krugliak M, Hunt NH, Grau GE (2006) Current perspectives on the mechanism of action of artemisinins. Int J Parasitol 36: 1427–1441

    PubMed  CAS  Google Scholar 

  117. Krishna S, Woodrow CJ, Staines HM, Haynes RK, Mercereau-Puijalon O (2006) Reevaluation of how artemisinins work in light of emerging evidence of in vitro resistance. Trends Mol Med 12: 200–205

    PubMed  CAS  Google Scholar 

  118. Endo A (1975) Compactin (ML-236B) and related compounds as potential cholesterol-lowering agents that inhibit HMG-CoA reductase. J Med Chem 28: 401–405

    Google Scholar 

  119. Brown AG, Smale TC, King TJ, Hasenkamp R, Thompson RH (1976) Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. J Chem Soc, Perkin Trans 1: 1165–1170

    Google Scholar 

  120. Endo A (1979) Monacolin K, a new hypocholesterolemic agent. J Antibiot 32: 852–854

    PubMed  CAS  Google Scholar 

  121. Endo A (1980) Monacolin K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Antibiot 33: 334–336

    PubMed  CAS  Google Scholar 

  122. Vagelos RP (1991) Are prescription drug prices too high? Science 252: 1090–1084

    Google Scholar 

  123. Arcamone FM (2005) Anthracyclines. In: GM Cragg, DGI Kingston, DJ Newman (eds): Anticancer agents from natural products. Taylor and Francis, Boca Raton, FL, 299–320

    Google Scholar 

  124. Pommier Y (2006) Topoisomerase I inhibitors: Camptothecins and beyond. Nat Rev Cancer 6: 789–802

    PubMed  CAS  Google Scholar 

  125. Hecht SM (2005) Bleomycin group antitumor agents. In: GM Cragg, DGI Kingston, DJ Newman (eds): Anticancer agents from natural products. Taylor and Francis, Boca Raton, FL, 357–381

    Google Scholar 

  126. Hamann PR, Upeslacis J, Borders DB (2005) Enediynes. In: GM Cragg, DGI Kingston, DJ Newman (eds): Anticancer agents from natural products. Taylor and Francis, Boca Raton, FL, 451–474

    Google Scholar 

  127. Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holocomb R, Hallett W, Tsou H-R, Upeslacis J, Shochat D et al (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjugate Chem 13: 47–58

    CAS  Google Scholar 

  128. Hartwell JL (1982) Plants used against cancer. Quarterman, Lawrence, MA

    Google Scholar 

  129. Cragg GM, Boyd MR, Cardellina II JH, Newman DJ, Snader KM, McCloud TG (1994) Ethnobotany and drug discovery: The experience of the US National Cancer Institute. In: DJ Chadwick, J Marsh (eds): Ethnobotany and the search for new drugs Ciba Foundation Symposium. Wiley & Sons, Chichester, UK, 178–196

    Google Scholar 

  130. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69: 1121–1124

    PubMed  CAS  Google Scholar 

  131. Kingston DGI (2005) Taxol and its analogs. In: GM Cragg, DGI Kingston, DJ Newman (eds): Anticancer agents from natural products. Taylor and Francis, Boca Raton, FL, 89–122

    Google Scholar 

  132. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, Tao C, De T, Beals B, Dykes D et al (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of Cremophor-free, albumin-bound paclitaxel, ABI-007, compared with Cremophor-based paclitaxel. Clin Cancer Res 12: 1317–1324

    PubMed  CAS  Google Scholar 

  133. Green MR, Manikhas GM, Orlov S, Afanasyev B, Makhson AM, Bhar P, Hawkins MJ (2006) Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol 17: 1263–1268

    PubMed  CAS  Google Scholar 

  134. Rahier NJ, Thomas J, Hecht SM (2005) Camptothecin and its analogs. In: GM Cragg, DGI Kingston, DJ Newman (eds): Anticancer agents from natural products. Taylor and Francis, Boca Raton, FL, 5–21

    Google Scholar 

  135. Lee JH, Lee JM, Kim JK, Ahn SK, Lee SJ, Kim MY, Jew SS, Park JG, Hong CI (1998) Antitumor activity of 7-[2-(N-isopropylamino)ethyl]-(20S)-camptothecin, CKD602, as a potent DNA topoisomerase I inhibitor. Arch Pharm Res 21: 581–590

    PubMed  CAS  Google Scholar 

  136. Chung MK, Han SS, Kim JC (2006) Evaluation of the toxic potentials of a new camptothecin anticancer agent CKD-602 on fertility and early embryonic development in rats. Regul Toxicol Pharmacol 45: 273–281

    PubMed  CAS  Google Scholar 

  137. Crul M (2003) CKD-602. Chong Kun Dang. Curr Opin Investig Drugs 4: 1455–1459

    PubMed  CAS  Google Scholar 

  138. Ishizumi K, Ohashi N, Tanno N (1987) Stereospecific total synthesis of 9-aminoanthracyclines: (+)-9-amino-9-deoxydaunomycin and related compound. J Org Chem 52: 4477–4485

    CAS  Google Scholar 

  139. Hanada M, Mizuno S, Fukushima A, Saito Y, Noguchi T, Yamaoka T (1998) A new antitumor agent amrubicin induces cell growth inhibition by stabilizing topoisomerase II-DNA complex. Jpn J Cancer Res 89: 1229–1238

    PubMed  CAS  Google Scholar 

  140. Hanada M, Noguchi T, Yamaoka T (2006) Amrubicin induces apoptosis in human tumor cells mediated by the activation of caspase-3/7 preceding a loss of mitochondrial membrane potential. Cancer Sci 97: 1396–1403

    PubMed  CAS  Google Scholar 

  141. Miller TA, Witter DJ, Belvedere S (2003) Histone deacetylase inhibitors. J Med Chem 46: 5097–5116

    PubMed  CAS  Google Scholar 

  142. Richon VM, Webb Y, Merger R, Sheppard T, Jursic B, Ngo L, Civoli F, Breslow R, Rifkind RA, Marks PA (1996) Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc Natl Acad Sci USA 93: 5705–5708

    PubMed  CAS  Google Scholar 

  143. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5: 769–784

    PubMed  CAS  Google Scholar 

  144. Tsuji N, Kobayashi M, Nagashima K, Wakisaka Y, Koizumi K (1976) A new antifungal antibiotic, trichostatin. J Antibiot 29: 1–6

    PubMed  CAS  Google Scholar 

  145. Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265: 17174–17179

    PubMed  CAS  Google Scholar 

  146. Gu J, Ruppen ME, Cai P (2005) Lipase-catalyzed regioselective esterification of rapamycin: Synthesis of temsirolimus (CCI-779). Org Lett 7: 3945–3948

    PubMed  CAS  Google Scholar 

  147. Reddy GK, Mughal TI, Rini BI (2006) Current data with mammalian target of rapamycin inhibitors in advanced-stage renal cell carcinoma. Clin Genitourin Cancer 5:110–113

    PubMed  CAS  Google Scholar 

  148. Smolewski P (2006) Investigating mammalian target of rapamycin inhibitors for their anticancer properties. Expert Opin Investig Drugs 15: 1201–1227

    PubMed  CAS  Google Scholar 

  149. Jimeno J, Faircloth G, Fernández-Sousa JM, Scheuer P, Rinehart K (2004) New marine derived anticancer therapeutics —A journey from the sea to clinical trials. Mar Drugs 2: 14–29

    CAS  Google Scholar 

  150. Fayette J, Coquard IR, Alberti L, Boyle H, Meeus P, Decouvelaere AV, Thiesse P, Sunyach MP, Ranchere D, Blay JY (2006) ET-743: A novel agent with activity in soft-tissue sarcomas. Curr Opin Oncol 18: 347–353

    PubMed  CAS  Google Scholar 

  151. Sakai R, Rinehart KL, Guan Y, Wang AH (1992) Additional antitumor ecteinascidins from a Caribbean tunicate: Crystal structures and activities in vivo. Proc Natl Acad Sci USA 89: 11456–11460

    PubMed  CAS  Google Scholar 

  152. Sakai R, Jares-Erijman EA, Manzanares I, Silva Elipe MV, Rinehart KL (1996) Ecteinascidins: Putative biosynthetic precursors and absolute stereochemistry. J Am Chem Soc 118: 9017–9023

    CAS  Google Scholar 

  153. Menchaca R, Martinez V, Rodriguez A, Rodriguez N, Flores M, Gallego P, Manzanares I, Cuevas C (2003) Synthesis of natural ecteinascidins (ET-729, ET-745, ET-759B, ET-736, ET-637, ET-594) from cyanosafracin B. J Org Chem 68: 8859–8866

    PubMed  CAS  Google Scholar 

  154. David-Cordonnier MH, Gajate C, Olmea O, Laine W, de la Iglesia-Vicente J, Perez C, Cuevas C, Otero G, Manzanares I, Bailly C et al (2005) DNA and non-DNA targets in the mechanism of action of the antitumor drug trabectedin. Chem Biol 12: 1201–1210

    PubMed  CAS  Google Scholar 

  155. Pettit GR, Singh SB, Hamel E, Lin CM, Alberts DS, Garcia-Kendall D (1989) Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia 45: 209–211

    PubMed  CAS  Google Scholar 

  156. Pettit GR, Singh SB, Hamel E, Lin CM, Alberts DS, Garcia-Kendall D (1989) Erratum, isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia 45: 680

    Google Scholar 

  157. Chaplin DJ, Horsman MR, Siemann DW (2006) Current development status of smallmolecule vascular disrupting agents. Curr Opin Investig Drugs 7: 522–528

    PubMed  CAS  Google Scholar 

  158. Mahindroo N, Liou J-P, Chang J-Y, Hsieh H-P (2006) Antitubulin agents for the treatment of cancer —a medicinal chemistry update. Expert Opin Ther Patents 16: 647–691

    CAS  Google Scholar 

  159. Tron GC, Pirali T, Sorba G, Pagliai F, Busacca S, Genazzani AA (2006) Medicinal chemistry of combretastatin A4: Present and future directions. J Med Chem 49: 3033–3044

    PubMed  CAS  Google Scholar 

  160. Pettit GR, Temple Jr C, Narayanan VL, Varma R, Simpson MJ, Boyd MR, Rener GA, Bansal N (1995) Antineoplastic agents 322. Synthesis of combretastatin A-4 prodrugs. Anticancer Drug Des 10: 299–309

    PubMed  CAS  Google Scholar 

  161. Tujebajeva RM, Graifer DM, Karpova GG, Ajtkhozhina NA (1989) Alkaloid homoharringtonine inhibits polypeptide chain elongation on human ribosomes on the step of peptide bond formation. FEBS Lett 257: 254–256

    PubMed  CAS  Google Scholar 

  162. Kantarjian HM, Talpaz M, Santini V, Murgo A, Cheson B, O’Brien SM (2001) Homoharringtonine: history, current research, and future direction. Cancer 92: 1591–1605

    PubMed  CAS  Google Scholar 

  163. Lévy V, Zohar S, Bardin C, Vekhoff A, Chaoui D, Rio B, Legrand O, Sentenac S, Rousselot P, Raffoux E et al (2006) A phase I dose-finding and pharmacokinetic study of subcutaneous semisynthetic homoharringtonine (ssHHT) in patients with advanced acute myeloid leukaemia. Br J Cancer 95: 253–259

    PubMed  Google Scholar 

  164. Powell RG, Weisleder D, Smith Jr CR, Rohwedder WK (1970) Structures of harringtonine, isoharringtonine, and homoharringtonine. Tetrahedron Lett 11: 815–818

    PubMed  CAS  Google Scholar 

  165. Robin J-P, Blanchard J, Cavoleau S, Chauviat L, Charbonnel S, Dhal R, Dujardin G, Fournier F, Gilet C, Girodier L et al (2001) USA Patent No. US6,613,900

    Google Scholar 

  166. Choueiri TK, Wesolowski R, Mekhail TM (2006) Phenoxodiol: Isoflavone analog with antineoplastic activity. Curr Oncol Rep 8: 104–107

    PubMed  CAS  Google Scholar 

  167. Mor G, Fu HH, Alvero AB (2006) Phenoxodiol, a novel approach for the treatment of ovarian cancer. Curr Opin Investig Drugs 7: 542–548

    PubMed  CAS  Google Scholar 

  168. Davies SL, Bozzo J (2006) Spotlight on tNOX: A tumor-selective target for cancer therapies. Drug News Perspect 19: 223–225

    PubMed  Google Scholar 

  169. Gelmon KA, Latreille J, Tolcher A, Génier L, Fisher B, Forand D, D’Aloisio S, Vernillet L, Daigneault L, Lebecq A et al (2000) Phase I dose-finding study of a new taxane, RPR 109881A, administered as a one-hour intravenous infusion days 1 and 8 to patients with advanced solid tumors. J Clin Oncol 18: 4098–4108

    PubMed  CAS  Google Scholar 

  170. Kurata T, Shimada Y, Tamura T, Yamamoto N, Hyodo I, Saeki T, Takashima S, Fujiwara K, Wakasugi H, Kashimura M (2000) Phase I and pharmacokinetic study of a new taxoid, RPR 109881A, given as a 1-hour intravenous infusion in patients with advanced solid tumors. J Clin Oncol 18: 3164–3171

    PubMed  CAS  Google Scholar 

  171. Sessa C, Cuvier C, Caldiera S, Bauer J, Van den Bosch S, Monnerat C, Semiond D, Pérard D, Lebecq A, Besenval M et al (2002) Phase I clinical and pharmacokinetic studies of the taxoid derivative RPR 109881A administered as a 1-hour or a 3-hour infusion in patients with advanced solid tumors. Ann Oncol 13: 1140–1150

    PubMed  CAS  Google Scholar 

  172. Kaur G, Stetler-Stevenson M, Sebers S, Worland P, Sedlacek H, Myers C, Czech J, Naik R, Sausville E (1992) Growth inhibition with reversible cell cycle arrest of carcinoma cells by flavone L86-8275. J Natl Cancer Inst 84: 1736–1740

    PubMed  CAS  Google Scholar 

  173. Blagosklonny MV (2004) Flavopiridol, an inhibitor of transcription: implications, problems and solutions. Cell Cycle 3: 1537–1542

    PubMed  CAS  Google Scholar 

  174. Potapova TA, Daum JR, Pittman BD, Hudson JR, Jones TN, Satinover DL, Stukenberg PT, Gorbsky GJ (2006) The reversibility of mitotic exit in vertebrate cells. Nature 440: 954–958

    PubMed  CAS  Google Scholar 

  175. Shapiro GI (2006) Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24: 1770–1783

    PubMed  CAS  Google Scholar 

  176. Harmon AD, Weiss U, Silverton JV (1979) The structure of rohitukine, the main alkaloid of Amoora rohituka (Syn. Aphanamixis polystachya) (Meliaceae). Tet Letts 20: 721–724

    Google Scholar 

  177. Naik RG, Kattige SL, Bhat SB, Alreja B, de Souza NJ, Rupp RH (1988) An antiinflammatory cum immunomodulatory piperidinylbenzopyranone from Dysoxylum binectariferum: Isolation, structure and total synthesis. Tetrahedron 44: 2081–2086

    CAS  Google Scholar 

  178. Bennouna J, Campone M, Delord JP, Pinel MC (2005) Vinflunine: A novel antitubulin agent in solid malignancies. Expert Opin Investig Drugs 14: 1259–1267

    PubMed  CAS  Google Scholar 

  179. Kruczynski A, Poli M, Dossi R, Chazottes E, Berrichon G, Ricome C, Giavazzi R, Hill BT, Taraboletti G (2006) Anti-angiogenic, vascular-disrupting and anti-metastatic activities of vinflunine, the latest vinca alkaloid in clinical development. Eur J Cancer 42: 2821–2832

    PubMed  CAS  Google Scholar 

  180. Johnson SAN (1996) Vinorelbine: An update and review of activity. Clin Oncol 8: 353–357

    CAS  Google Scholar 

  181. Fahy J, Duflos A, Ribet J-P, Jacquesy J-C, Berrier C, Jouannetaud M-P, Zunino F (1997) Vinca alkaloids in superacidic media: A method for creating a new family of antitumor derivatives. J Am Chem Soc 119: 8576–8577

    CAS  Google Scholar 

  182. Jacquesy J-C, Berrier C, Jouannetaud M-P, Zunino F, Fahy J, Duflos A, Ribet J-P (2002) Fluorination in superacids: A novel access to biologically active compounds. J Fluor Chem 114: 139–141

    CAS  Google Scholar 

  183. Okouneva T, Hill BT, Wilson L, Jordan MA (2003) The effects of vinflunine, vinorelbine, and vinblastine on centromere dynamics. Mol Cancer Ther 2: 427–436

    PubMed  CAS  Google Scholar 

  184. Nettleton DE, Doyle TW, Krishnan B, Matsumoto GK, Clardy J (1985) Isolation and structure of rebeccamycin —a new antitumor antibiotic from Nocardia aerocoligenes. Tetrahedron Lett 26: 4011–4014

    CAS  Google Scholar 

  185. Krishnan BS, Moore ME, Lavoie CP, Long BH, Dalterio RA, Wong HS, Rosenberg IE (1994) Fluorescence polarization studies of the binding of BMS 181176 to DNA. J Biomol Struct Dyn 12: 625–636

    PubMed  CAS  Google Scholar 

  186. Long BH, Rose WC, Vyas DM, Matson JA, Forenza S (2002) Discovery of antitumor indolocarbazoles: Rebeccamycin, NSC 655649, and fluoroindolocarbazoles. Curr Med Chem Anticancer Agents 2: 255–266

    PubMed  CAS  Google Scholar 

  187. Prudhomme M (2003) Rebeccamycin analogues as anti-cancer agents. Eur J Med Chem 38: 123–140

    PubMed  CAS  Google Scholar 

  188. Rewcastle GW (2005) Becatecarin (Helsinn Healthcare). IDrugs 8: 838–847

    PubMed  CAS  Google Scholar 

  189. Ricart AD, Hammond LA, Kuhn JG, Takimoto CH, Goetz A, Forouzesh B, Forero L, Ochoa-Bayona JL, Berg K, Tolcher AW et al (2005) Phase I and pharmacokinetic study of sequences of the rebeccamycin analogue NSC 655649 and cisplatin in patients with advanced solid tumors. Clin Cancer Res 11: 8728–8736

    PubMed  CAS  Google Scholar 

  190. Faul MM, Gillig JR, Jirousek MR, Ballas LM, Schotten T, Kahl A, Mohr M (2003) Acyclic N-(azacycloalkyl)bisindolylmaleimides: Isozyme selective inhibitors of PKCβ. Bioorg Med Chem Lett 13: 1857–1859

    PubMed  CAS  Google Scholar 

  191. Faul MM, Grutsch JL, Kobierski ME, Kopach ME, Krumrich CA, Staszak MA, Udodong U, Vicenzi JT, Sullivan KA (2003) Strategies for the synthesis of N-(azacycloalkyl)bisin dolylmaleimides: Selective inhibitors of PKCβ. Tetrahedron 59: 7215–7229

    CAS  Google Scholar 

  192. Pearce HL, Miller MA (2005) The evolution of cancer research and drug discovery at Lilly Research Laboratories. Adv Enzyme Regul 45: 229–255

    PubMed  Google Scholar 

  193. Rizvi MA, Ghias K, Davies KM, Ma C, Weinberg F, Munshi HG, Krett NL, Rosen ST (2006) Enzastaurin (LY317615), a protein kinase Cβ inhibitor, inhibits the AKT pathway and induces apoptosis in multiple myeloma cell lines. Mol Cancer Ther 5: 1783–1789

    PubMed  CAS  Google Scholar 

  194. Verhoef C, de Wilt JH, Verheul HM (2006) Angiogenesis inhibitors: Perspectives for medical, surgical and radiation oncology. Curr Pharm Des 12: 2623–2630

    PubMed  CAS  Google Scholar 

  195. Altmann K-H (2004) The merger of natural product synthesis and medicinal chemistry: On the chemistry and chemical biology of epothilones. Org Biomol Chem 2: 2137–2152

    PubMed  CAS  Google Scholar 

  196. Bergstralh DT, Ting JP (2006) Microtubule stabilizing agents: Their molecular signaling consequences and the potential for enhancement by drug combination. Cancer Treat Rev 32: 166–179

    PubMed  CAS  Google Scholar 

  197. Höfle G, Bedorf N, Gerth K, Reichenbach H (1993) German Patent No. DE4,138,042

    Google Scholar 

  198. Höfle G, Bedorf N, Steinmetz H, Schomburg D, Gerth K, Reichenbach H (1996) Epothilone A and B —novel 16-membered. Macrolides with cytotoxic activity: Isolation, crystal structure, and conformation in solution. Angew Chem Int Ed 35: 1567–1569

    Google Scholar 

  199. Gerth K, Bedorf N, Höfle G, Irschik H, Reichenbach H (1996) Epothilons A and B: Antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties. J Antibiot 49: 560–563

    PubMed  CAS  Google Scholar 

  200. Bollag DM, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E, Woods CM (1995) Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 55: 2325–2333

    PubMed  CAS  Google Scholar 

  201. Rubin EH, Rothermel J, Tesfaye F, Chen T, Hubert M, Ho YY, Hsu CH, Oza AM (2005) Phase I dose-finding study of weekly single-agent patupilone in patients with advanced solid tumors. J Clin Oncol 23: 9120–9129

    PubMed  CAS  Google Scholar 

  202. Borzilleri RM, Zheng X, Schmidt RJ, Johnson JA, Kim SH, DiMarco JD, Fairchild CR, Gougoutas JZ, Lee FYF, Long BH et al (2000) A novel application of a Pd(0)-catalyzed nucleophilic substitution reaction to the regioand stereoselective synthesis of lactam analogues of the epothilone natural products. J Am Chem Soc 122: 8890–8897

    CAS  Google Scholar 

  203. Lee FYF, Borzilleri R, Fairchild CR, Kim SH, Long BH, Reventos-Suarez C, Vite GD, Rose WC, Kramer RA (2001) BMS-247550: A novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin Cancer Res 7: 1429–1437

    PubMed  CAS  Google Scholar 

  204. Puri SC, Verma V, Amna T, Qazi N, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68: 1717–1719

    PubMed  CAS  Google Scholar 

  205. Yu T-W, Floss HG (2005) Ansamitocins (Maytansinoids). In: GM Cragg, DGI Kingston, DJ Newman (eds): Anticancer agents from natural sources. Taylor and Francis, Boca Raton, FL, 321–337

    Google Scholar 

  206. McAlpine JB, Bachmann BO, Piraee M, Tremblay S, Alarco A-M (2005) Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel anitfungal agent, as an example. J Nat Prod 68: 493–496

    PubMed  CAS  Google Scholar 

  207. Challis GL, Hopwodd DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100: 14555–14561

    PubMed  CAS  Google Scholar 

  208. Newman DJ, Hill RT (2006) New drugs from marine microbes: The tide is turning. J Ind Microbiol Biotechnol 33: 539–544

    PubMed  CAS  Google Scholar 

  209. Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437: 884–888

    PubMed  CAS  Google Scholar 

  210. Bok JW, Hiffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP (2006) Genomic mining for Aspergillus natural products. Chem Biol 13: 31–37

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag, Basel (Switzerland)

About this chapter

Cite this chapter

Butler, M.S., Newman, D.J. (2008). Mother Nature’s gifts to diseases of man: the impact of natural products on anti-infective, anticholestemics and anticancer drug discovery. In: Petersen, F., Amstutz, R. (eds) Natural Compounds as Drugs Volume I. Progress in Drug Research, vol 65. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8117-2_1

Download citation

Publish with us

Policies and ethics