Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 254))

  • 1753 Accesses

Abstract

The first aim of this chapter is to provide the background material on differential geometry for the whole book. Then, in the last two sections, we present a heat kernel proof of Demailly’s holomorphic Morse inequalities, Theorem 1.7.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.8 Bibliographic notes

  1. A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Etudes Sci. Publ. Math. 25 (1965), 81–130; Erratum: 27 (1965), 153–155. p. 113

    Article  MathSciNet  Google Scholar 

  2. M.F. Atiyah, R. Bott, and V.K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279–330, Erratum 28 (1975), 277–280. Appendix II

    Article  MATH  MathSciNet  Google Scholar 

  3. M.F. Atiyah and I.M. Singer, Index of elliptic operators. III, Ann. of Math. 87 (1968), 546–604.

    Article  MathSciNet  Google Scholar 

  4. N. Berline, E. Getzler, and M. Vergne, Heat kernels and Dirac operators, Grundl. Math. Wiss. Band 298, Springer-Verlag, Berlin, 1992. § 1.2

    Google Scholar 

  5. J.-M. Bismut, The Witten complex and degenerate Morse inequalities, J. Differential Geom. 23 (1986), 207–240.

    MATH  MathSciNet  Google Scholar 

  6. _____, Demailly’s asymptotic inequalities: a heat equation proof, J. Funct. Anal. 72 (1987), 263–278.

    Article  MATH  MathSciNet  Google Scholar 

  7. _____, A local index theorem for non-Kähler manifolds, Math. Ann. 284 (1989), no. 4, 681–699.

    Article  MATH  MathSciNet  Google Scholar 

  8. J.-M. Bismut and G. Lebeau, Complex immersions and Quillen metrics, Inst. Hautes Études Sci. Publ. Math. (1991), no. 74, ii+298 pp. (1992). §11

    Google Scholar 

  9. J.-M. Bismut and E. Vasserot, The asymptotics of the Ray-Singer analytic torsion associated with high powers of a positive line bundle, Comm. Math. Phys. 125 (1989), 355–367. Th. 1.1

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Borthwick and A. Uribe, Almost complex structures and geometric quantization, Math. Res. Lett. 3 (1996), 845–861. Erratum: Math. Res. Lett. 5 (1998), 211–212.

    MATH  MathSciNet  Google Scholar 

  11. Th. Bouche, Convergence de la métrique de Fubini-Study d’un fibré linéare positif, Ann. Inst. Fourier (Grenoble) 40 (1990), 117–130.

    MATH  MathSciNet  Google Scholar 

  12. M. Braverman, Vanishing theorems on covering manifolds, Contemp. Math. 213 (1999), 1–23.

    Google Scholar 

  13. J.-P. Demailly, Champs magnétiques et inegalités de Morse pour la d″-cohomologie, Ann. Inst. Fourier (Grenoble) 35 (1985), 189–229.

    MATH  MathSciNet  Google Scholar 

  14. _____, Sur l’identité de Bochner-Kodaira-Nakano en géométrie hermitienne, Lecture Notes in Math., vol. 1198, pp. 88–97, Springer Verlag, 1985.

    MathSciNet  Google Scholar 

  15. _____, Holomorphic Morse inequalities, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 93–114.

    Google Scholar 

  16. M. do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1992.

    Google Scholar 

  17. G.B. Folland and J.J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Princeton University Press, Princeton, N.J., 1972, Annals of Mathematics Studies, No. 75.

    MATH  Google Scholar 

  18. P. Griffiths, The extension problem in complex analysis; embedding with positive normal bundle, Amer. J. Math. 88 (1966), 366–446.

    Article  MATH  MathSciNet  Google Scholar 

  19. F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 9, Springer-Verlag, Berlin, 1956.

    Google Scholar 

  20. L. Hörmander, L 2-estimates and existence theorem for the \( \bar \partial \)-operator, Acta Math. 113 (1965), 89–152.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, vol. 15, Princeton University Press, Princeton, NJ, 1987, Kanô Memorial Lectures, 5.

    MATH  Google Scholar 

  22. J.J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds I, Ann. Math. 78 (1963), 112–148.

    Article  MathSciNet  Google Scholar 

  23. H.B. Lawson and M.-L. Michelson, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton Univ. Press, Princeton, NJ, 1989. Appendix II

    Google Scholar 

  24. X. Ma and G. Marinescu, The Spinc Dirac operator on high tensor powers of a line bundle, Math. Z. 240 (2002), no. 3, 651–664. § 2

    Article  MATH  MathSciNet  Google Scholar 

  25. V. Mathai and S. Wu, Equivariant holomorphic Morse inequalities. I. Heat kernel proof, J. Differential Geom. 46 (1997), no. 1, 78–98.

    MATH  MathSciNet  Google Scholar 

  26. J. Milnor, Morse Theory, Ann. Math. Studies, vol. 51, Princeton University Press, 1963.

    Google Scholar 

  27. J. Morrow and K. Kodaira, Complex manifolds, AMS Chelsea Publishing, Providence, RI, 2006, Reprint of the 1971 edition with errata.

    MATH  Google Scholar 

  28. T. Ohsawa, Isomorphism theorems for cohomology groups of weakly 1-complete manifolds, Publ. Res. Inst. Math. Sci. 18 (1982), 191–232.

    MATH  MathSciNet  Google Scholar 

  29. A. Weil, Introduction a l’étude des variétés kählériennes, Actualités scientifiques et industrielles, vol. 1267, Hermann, Paris, 1958.

    Google Scholar 

  30. R.O. Wells, Differential analysis on complex manifolds, second ed., GTM, vol. 65, Springer-Verlag, New York, 1980.

    MATH  Google Scholar 

  31. E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), 661–692.

    MATH  MathSciNet  Google Scholar 

  32. _____, Holomorphic Morse inequalities, Algebraic and differential topology — global differential geometry, Teubner-Texte Math., vol. 70, Teubner, Leipzig, 1984, pp. 318–333.

    Google Scholar 

  33. S. Wu and W. Zhang, Equivariant holomorphic Morse inequalities. III. Non-isolated fixed points, Geom. Funct. Anal. 8 (1998), no. 1, 149–178.

    Article  MATH  MathSciNet  Google Scholar 

  34. W. Zhang, Lectures on Chern-Weil Theory and Witten Deformations, Nankai Tracts in Mathematics, vol. 4, World Scientific, Hong Kong, 2001.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag AG

About this chapter

Cite this chapter

(2007). Demailly’s Holomorphic Morse Inequalities. In: Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, vol 254. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8115-8_2

Download citation

Publish with us

Policies and ethics