Skip to main content

Role of the blood-brain barrier and blood-CSF barrier in the pathogenesis of bacterial meningitis

  • Chapter
Book cover Pediatric Infectious Diseases Revisited

Abstract

Despite significant progress in prevention, diagnosis and therapy acute bacterial meningitis remains an important cause of high morbidity and mortality in the pediatric population with no significant improvement in the outcome in recent years. Further amelioration in treatment can only result from a better understanding of the pathophysiological events that occur after activation of the host’s inflammatory pathways secondary to initial bacterial invasion. The need for improved management strategies is highlighted by the observed increase in antibiotic resistance of microbial pathogens and recent developments in the pharmacological treatment of meningitis patients with dexamethasone, which might adversely influence delivery of drugs to the central nervous system (CNS). In this respect the cellular and molecular events at the blood-CNS barriers come to the focus of attention. It has become evident that these anatomical and functional barriers with their differentiated functionality and vast surface area centrally contribute to the development of bacterial meningitis. This holds true not only for their role as a port of entry into the CNS but also as key players in the pathophysiological cascade following bacterial invasion into the brain. Important aspects that have to be considered are the unique anatomical and functional features of the blood-brain barrier and the bloodcerebrospinal fluid barrier, and their distinct interactions with the variety of pathogens responsible for the development of bacterial meningitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim KS (2003) Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat Rev Neurosci 4: 376–385

    Article  PubMed  CAS  Google Scholar 

  2. Saez-Llorens X, McCracken GH Jr (2003) Bacterial meningitis in children. Lancet 361: 2139–2148

    Article  PubMed  Google Scholar 

  3. Yogev R, Guzman-Cottrill J (2005) Bacterial meningitis in children: critical review of current concepts. Drugs 65: 1097–1112

    Article  PubMed  CAS  Google Scholar 

  4. Klinger G, Chin CN, Beyene J, Perlman M (2000) Predicting the outcome of neonatal bacterial meningitis. Pediatrics 106: 477–482

    Article  PubMed  CAS  Google Scholar 

  5. Anderson V, Anderson P, Grimwood K, Nolan T (2004) Cognitive and executive function 12 years after childhood bacterial meningitis: effect of acute neurologic complications and age of onset. J Pediatr Psychol 29: 67–81

    Article  PubMed  Google Scholar 

  6. Nau R, Bruck W (2002) Neuronal injury in bacterial meningitis: mechanisms and implications for therapy. Trends Neurosci 25: 38–45

    Article  PubMed  CAS  Google Scholar 

  7. Kornelisse RF, Westerbeek CM, Spoor AB, van der Heijde B, Spanjaard L, Neijens HJ, de Groot R (1995) Pneumococcal meningitis in children: prognostic indicators and outcome. Clin Infect Dis 21: 1390–1397

    PubMed  CAS  Google Scholar 

  8. Koedel U, Scheld WM, Pfister HW (2002) Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis 2: 721–736

    Article  PubMed  Google Scholar 

  9. Adam R, Schroten H (2004) Pathogenese der bakteriellen Meningitis. Monatsschr Kinderheilk 152: 362–370

    Article  Google Scholar 

  10. Oggioni MR, Trappetti C, Kadioglu A, Cassone M, Iannelli F, Ricci S, Andrew PW, Pozzi G (2006) Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol Microbiol 61: 1196–1210

    Article  PubMed  CAS  Google Scholar 

  11. Moxon R, Tang C (2000) Challenge of investigating biologically relevant functions of virulence factors in bacterial pathogens. Philos Trans R Soc Lond B Biol Sci 355: 643–656

    Article  PubMed  CAS  Google Scholar 

  12. Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3: 569–581

    Article  PubMed  CAS  Google Scholar 

  13. Tauber MG, Moser B (1999) Cytokines and chemokines in meningeal inflammation: biology and clinical implications. Clin Infect Dis 28: 1–11

    PubMed  CAS  Google Scholar 

  14. van Furth AM, Roord JJ, van Furth R (1996) Roles of proinflammatory and anti-inflammatory cytokines in pathophysiology of bacterial meningitis and effect of adjunctive therapy. Infect Immun 64: 4883–4890

    PubMed  Google Scholar 

  15. van Deuren M, Brandtzaeg P, van der Meer JW (2000) Update on meningococcal disease with emphasis on pathogenesis and clinical management. Clin Microbiol Rev 13: 144–166

    PubMed  Google Scholar 

  16. Humphries HE, Triantafilou M, Makepeace BL, Heckels JE, Triantafilou K, Christodoulides M (2005) Activation of human meningeal cells is modulated by lipopolysaccharide (LPS) and non-LPS components of Neisseria meningitidis and is independent of Toll-like receptor (TLR)4 and TLR2 signalling. Cell Microbiol 7: 415–430

    Article  PubMed  CAS  Google Scholar 

  17. Scheld WM, Koedel U, Nathan B, Pfister HW (2002) Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J Infect Dis 186(Suppl 2): S225–233

    Article  PubMed  CAS  Google Scholar 

  18. Reiber H (2003) Proteins in cerebrospinal fluid and blood: barriers, CSF flow rate and source-related dynamics. Restor Neurol Neurosci 21: 79–96

    PubMed  CAS  Google Scholar 

  19. Gabrion JB, Herbute S, Bouille C, Maurel D, Kuchler-Bopp S, Laabich A, Delaunoy JP (1998) Ependymal and choroidal cells in culture: characterization and functional differentiation. Microsc Res Tech 41: 124–157

    Article  PubMed  CAS  Google Scholar 

  20. Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16: 1–13

    Article  PubMed  CAS  Google Scholar 

  21. Pardridge WM (1999) Blood-brain barrier biology and methodology. J Neurovirol 5: 556–569

    PubMed  CAS  Google Scholar 

  22. Huber JD, Egleton RD, Davis TP (2001) Molecular physiology and patophysiology of tight junctions in the blood-brain barrier. Trends Neurosci 24: 719–725

    Article  PubMed  CAS  Google Scholar 

  23. Neuwelt EA (2004) Mechanisms of disease: the blood-brain barrier. Neurosurgery 54: 131–140; discussion 141–132

    Article  PubMed  Google Scholar 

  24. Johanson CE (2003) The Choroid Plexus-CSF Nexus, Gateway to the Brain. Humana Press, Totowa

    Google Scholar 

  25. van Deurs B (1980) Structural aspects of brain barriers, with special reference to the permeability of the cerebral endothelium and choroidal epithelium. Int Rev Cytol 65: 117–191

    PubMed  Google Scholar 

  26. Segal MB (2000) The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell Mol Neurobiol 20: 183–196

    Article  PubMed  CAS  Google Scholar 

  27. Keep RF, Jones HC (1990) A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Dev Brain Res 56: 47–53

    Article  CAS  Google Scholar 

  28. Strazielle N, Ghersi-Egea JF (2000) Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol 59: 561–574

    PubMed  CAS  Google Scholar 

  29. Spector R, Johanson CE (1989) The mammalian choroid plexus. Sci Am 261: 68–74

    PubMed  CAS  Google Scholar 

  30. Dellmann HD (1998) Structure of the subfornical organ: a review. Microsc Res Tech 41: 85–97

    Article  PubMed  CAS  Google Scholar 

  31. Schulz M, Engelhardt B (2005) The circumventricular organs participate in the immunopathogenesis of experimental autoimmune encephalomyelitis. Cerebrospinal Fluid Res 2: 8

    Article  PubMed  CAS  Google Scholar 

  32. Dietzman DE, Fischer GW, Schoenknecht FD (1974) Neonatal Escherichia coli septicemia — bacterial counts in blood. J Pediatr 85: 128–130

    Article  PubMed  CAS  Google Scholar 

  33. Marshall GS, Bell LM (1988) Correlates of high grade and low grade Haemophilus influenzae bacteremia. Pediatr Infect Dis J 7: 86–90

    Article  PubMed  CAS  Google Scholar 

  34. Moxon ER, Ostrow PT (1977) Haemophilus influenzae meningitis in infant rats: role of bacteremia in pathogenesis of age-dependent inflammatory responses in cerebrospinal fluid. J Infect Dis 135: 303–307

    PubMed  CAS  Google Scholar 

  35. Ferrieri P, Burke B, Nelson J (1980) Production of bacteremia and meningitis in infant rats with group B streptococcal serotypes. Infect Immun 27: 1023–1032

    PubMed  CAS  Google Scholar 

  36. Bell LM, Alpert G, Campos JM, Plotkin SA (1985) Routine quantitative blood cultures in children with Haemophilus influenzae or Streptococcus pneumoniae bacteremia. Pediatrics 76: 901–904

    PubMed  CAS  Google Scholar 

  37. Sullivan TD, LaScolea LJ Jr, Neter E (1982) Relationship between the magnitude of bacteremia in children and the clinical disease. Pediatrics 69: 699–702

    PubMed  CAS  Google Scholar 

  38. Kim KS, Itabashi H, Gemski P, Sadoff J, Warren RL, Cross AS (1992) The K1 capsule is the critical determinant in the development of Escherichia coli meningitis in the rat. J Clin Invest 90: 897–905

    PubMed  CAS  Google Scholar 

  39. Sullivan TD, LaScolea LJ Jr (1987) Neisseria meningitidis bacteremia in children: quantitation of bacteremia and spontaneous clinical recovery without antibiotic therapy. Pediatrics 80: 63–67

    PubMed  CAS  Google Scholar 

  40. Scheld WM, Park TS, Dacey RG, Winn HR, Jane JA, Sande MA (1979) Clearance of bacteria from cerebrospinal fluid to blood in experimental meningitis. Infect Immun 24: 102–105

    PubMed  CAS  Google Scholar 

  41. Smith AL, Daum RS, Scheifele D, Syriopolou V, Averill DR, Roberts MC, Stull TL (1982) Pathogenesis of Haemophilus influenzae meningitis. In: SH Sell, PF Wright (eds): Haemophilus influenzae, Epidemiology, Immunology. Elsevier, New York, 89–109

    Google Scholar 

  42. Quagliarello VJ, Long WJ, Scheld WM (1986) Morphologic alterations of the blood-brain barrier with experimental meningitis in the rat. Temporal sequence and role of encapsulation. J Clin Invest 77: 1084–1095

    PubMed  CAS  Google Scholar 

  43. Townsend GC, Scheld WM (1995) In vitro models of the blood-brain barrier to study bacterial meningitis. Trends Microbiol 3: 441–445

    Article  PubMed  CAS  Google Scholar 

  44. Rodriguez AF, Kaplan SL, Hawkins EP, Mason EO Jr (1991) Hematogenous pneumococcal meningitis in the infant rat: description of a model. J Infect Dis 164: 1207–1209

    PubMed  CAS  Google Scholar 

  45. Parkkinen J, Korhonen TK, Pere A, Hacker J, Soinila S (1988) Binding sites in the rat brain for Escherichia coli S fimbriae associated with neonatal meningitis. 81: 860–865

    CAS  Google Scholar 

  46. Zwijnenburg PJ, van der Poll T, Florquin S, van Deventer SJ, Roord JJ, van Furth AM (2001) Experimental pneumococcal meningitis in mice: a model of intranasal infection. J Infect Dis 183: 1143–1146

    Article  PubMed  CAS  Google Scholar 

  47. Pron B, Taha MK, Rambaud C, Fournet JC, Pattey N, Monnet JP, Musilek M, Beretti JL, Nassif X (1997) Interaction of Neisseria meningitidis with the components of the blood-brain barrier correlates with an increased expression of PilC. J Infect Dis 176: 1285–1292

    PubMed  CAS  Google Scholar 

  48. Townsend GC, Scheld WM (1995) Microbe-endothelium interactions in bloodbrain barrier permeability during bacterial meningitis: Although bacterial pathogens can directly disrupt the barrier, a role for host factors is still under study. ASM News 61: 294–298

    Google Scholar 

  49. Vanier G, Segura M, Friedl P, Lacouture S, Gottschalk M (2004) Invasion of porcine brain microvascular endothelial cells by Streptococcus suis serotype 2. Infect Immun 72: 1441–1449

    Article  PubMed  CAS  Google Scholar 

  50. Vadeboncoeur N, Segura M, Al-Numani D, Vanier G, Gottschalk M (2003) Proinflammatory cytokine and chemokine release by human brain microvascular endothelial cells stimulated by Streptococcus suis serotype 2. FEMS Immunol Med Microbiol 35: 49–58

    Article  PubMed  CAS  Google Scholar 

  51. Huang SH, Jong AY (2001) Cellular mechanisms of microbial proteins contributing to invasion of the blood-brain barrier. Cell Microbiol 3: 277–287

    Article  PubMed  CAS  Google Scholar 

  52. Huang SH, Stins MF, Kim KS (2000) Bacterial penetration across the blood-brain barrier during the development of neonatal meningitis. Microbes Infect 2: 1237–1244

    Article  PubMed  CAS  Google Scholar 

  53. Kim KS (2002) Strategy of Escherichia coli for crossing the blood-brain barrier. J Infect Dis 186(Suppl 2): S220–224

    Article  PubMed  Google Scholar 

  54. Smith AL, Greenfield MD, Toothaker RD (1984) Experimental meningitis in the rat: Haemophilus influenzae. Infection 12(Suppl 1): S11–22

    Article  PubMed  CAS  Google Scholar 

  55. Smith AL (1987) Pathogenesis of Haemophilus influenzae meningitis. Pediatr Infect Dis J 6: 783–786

    Article  PubMed  CAS  Google Scholar 

  56. Daum RS, Scheifele DW, Syriopoulou VP, Averill D, Smith AL (1978) Ventricular involvement in experimental Haemophilus influenzae meningitis. J Pediatr 93: 927–930

    Article  PubMed  CAS  Google Scholar 

  57. Williams AE, Blakemore WF (1990) Pathogenesis of meningitis caused by Streptococcus suis type 2. J Infect Dis 162: 474–481

    PubMed  CAS  Google Scholar 

  58. Prats N, Briones V, Blanco MM, Altimira J, Ramos JA, Dominguez L, Marco A (1992) Choroiditis and meningitis in experimental murine infection with Listeria monocytogenes. Eur J Clin Microbiol Infect Dis 11: 744–747

    Article  PubMed  CAS  Google Scholar 

  59. Leib SL, Kim YS, Black SM, Tureen JH, Tauber MG (1998) Inducible nitric oxide synthase and the effect of aminoguanidine in experimental neonatal meningitis. J Infect Dis 177: 692–700

    Article  PubMed  CAS  Google Scholar 

  60. Wellmer A, von Mering M, Spreer A, Diem R, Eiffert H, Noeske C, Bunkowski S, Gold R, Nau R (2004) Experimental pneumococcal meningitis: impaired clearance of bacteria from the blood due to increased apoptosis in the spleen in Bcl-2-deficient mice. Infect Immun 72: 3113–3119

    Article  PubMed  CAS  Google Scholar 

  61. Koedel U, Pfister HW (1999) Models of experimental bacterial meningitis. Role and limitations. Infect Dis Clin North Am 13: 549–577, vi

    Article  PubMed  CAS  Google Scholar 

  62. Tunkel AR (2001) Pathogenesis and pathophysiology. In: Tunkel AR (ed): Bacterial Meningitis. Lippincott Williams & Wilkins, Philadelphia, 41–85

    Google Scholar 

  63. Moxon ER, Smith AL, Averill DR, Smith DH (1974) Haemophilus influenzae meningitis in infant rats after intranasal inoculation. J Infect Dis 129: 154–162

    PubMed  CAS  Google Scholar 

  64. Borrelli S, Diab A, Lindberg A, Svanborg C (2000) Monoclonal anti-LPS inner core antibodies protect against experimental hematogenous Haemophilus influenzae type b meningitis. Microb Pathog 28: 1–8

    Article  PubMed  CAS  Google Scholar 

  65. Huang SH, Wass C, Fu Q, Prasadarao NV, Stins M, Kim KS (1995) Escherichia coli invasion of brain microvascular endothelial cells in vitro and in vivo: molecular cloning and characterization of invasion gene ibe10. Infect Immun 63, 4470–4475

    PubMed  CAS  Google Scholar 

  66. Xie Y, Kim KJ, Kim KS (2004) Current concepts on Escherichia coli K1 translocation of the blood-brain barrier. FEMS Immunol Med Microbiol 42: 271–279

    Article  PubMed  CAS  Google Scholar 

  67. Prasadarao NV, Wass CA, Weiser JN, Stins MF, Huang SH, Kim KS (1996) Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infect Immun 64: 146–153

    PubMed  CAS  Google Scholar 

  68. Kim KS, Wass CA, Cross AS (1997) Blood-brain barrier permeability during the development of experimental bacterial meningitis in the rat. Exp Neurol 145: 253–257

    Article  PubMed  CAS  Google Scholar 

  69. Leib SL, Heimgartner C, Bifrare YD, Loeffler JM, Tauber MG (2003) Dexamethasone aggravates hippocampal apoptosis and learning deficiency in pneumococcal meningitis in infant rats. Pediatr Res 54: 353–357

    Article  PubMed  CAS  Google Scholar 

  70. Pfister LA, Tureen JH, Shaw S, Christen S, Ferriero DM, Tauber MG, Leib SL (2000) Endothelin inhibition improves cerebral blood flow and is neuroprotective in pneumococcal meningitis. Ann Neurol 47: 329–335

    Article  PubMed  CAS  Google Scholar 

  71. Tauber MG, Sande MA (1984) Pathogenesis of bacterial meningitis: contributions by experimental models in rabbits. Infection 12(Suppl 1): S3–10

    Article  PubMed  Google Scholar 

  72. Christen S, Schaper M, Lykkesfeldt J, Siegenthaler C, Bifrare YD, Banic S, Leib SL, Tauber MG (2001) Oxidative stress in brain during experimental bacterial meningitis: differential effects of alpha-phenyl-tert-butyl nitrone and N-acetylcysteine treatment. Free Radic Biol Med 31: 754–762

    Article  PubMed  CAS  Google Scholar 

  73. Ostergaard C, Brandt C, Konradsen HB, Samuelsson S (2004) Differences in survival, brain damage, and cerebrospinal fluid cytokine kinetics due to meningitis caused by 3 different Streptococcus pneumoniae serotypes: evaluation in humans and in 2 experimental models. J Infect Dis 190: 1212–1220

    Article  PubMed  Google Scholar 

  74. Tsao N, Chang WW, Liu CC, Lei HY (2002) Development of hematogenous pneumococcal meningitis in adult mice: the role of TNF-alpha. FEMS Immunol Med Microbiol 32: 133–140

    PubMed  CAS  Google Scholar 

  75. Paul R, Koedel U, Pfister HW (2005) Development of adjunctive therapies for bacterial meningitis and lessons from knockout mice. Neurocrit Care 2: 313–324

    Article  PubMed  CAS  Google Scholar 

  76. Buster BL, Weintrob AC, Townsend GC, Scheld WM (1995) Potential role of nitric oxide in the pathophysiology of experimental bacterial meningitis in rats. Infect Immun 63: 3835–3839

    PubMed  CAS  Google Scholar 

  77. Tuomanen E (1996) Entry of pathogens into the central nervous system. FEMS Microbiol Rev 18: 289–299

    Article  PubMed  CAS  Google Scholar 

  78. Dorovini-Zis K, Prameya R, Bowman PD (1991) Culture and characterization of microvascular endothelial cells derived from human brain. Lab Invest 64: 425–436

    PubMed  CAS  Google Scholar 

  79. Gerhart DZ, Broderius MA, Drewes LR (1988) Cultured human and canine endothelial cells from brain microvessels. Brain Res Bull 21: 785–793

    Article  PubMed  CAS  Google Scholar 

  80. Bowman PD, Betz AL, Wolinsky JS, Penney JB, Shivers RR, Goldstein GW (1981) Primary culture of capillary endothelium from rat brain. In vitro 17: 353–362

    Article  PubMed  CAS  Google Scholar 

  81. Tunkel AR, Rosser SW, Hansen EJ, Scheld WM (1991) Blood-brain barrier alterations in bacterial meningitis: development of an in vitro model and observations on the effects of lipopolysaccharide. In Vitro Cell Dev Biol 27A: 113–120

    Article  PubMed  CAS  Google Scholar 

  82. Banks WA (1999) Physiology and pathology of the blood-brain barrier: implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. J Neurovirol 5: 538–555

    PubMed  CAS  Google Scholar 

  83. Zysk G, Schneider-Wald BK, Hwang JH, Bejo L, Kim KS, Mitchell TJ, Hakenbeck R, Heinz HP (2001) Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae. Infect Immun 69: 845–852

    Article  PubMed  CAS  Google Scholar 

  84. Stins MF, Gilles F, Kim KS (1997) Selective expression of adhesion molecules on human brain microvascular endothelial cells. J Neuroimmunol 76: 81–90

    Article  PubMed  CAS  Google Scholar 

  85. Birkness KA, Swisher BL, White EH, Long EG, Ewing EP Jr, Quinn FD (1995) A tissue culture bilayer model to study the passage of Neisseria meningitidis. Infect Immun 63: 402–409

    PubMed  CAS  Google Scholar 

  86. Haseloff RF, Blasig IE, Bauer HC, Bauer H (2005) In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol 25: 25–39

    Article  PubMed  CAS  Google Scholar 

  87. Michel U, Zobotke R, Mader M, Nau R (2001) Regulation of matrix metalloproteinase expression in endothelial cells by heat-inactivated Streptococcus pneumoniae. Infect Immun 69: 1914–1916

    Article  PubMed  CAS  Google Scholar 

  88. Badger JL, Kim KS (1998) Environmental growth conditions influence the ability of Escherichia coli K1 to invade brain microvascular endothelial cells and confer serum resistance. Infect Immun 66: 5692–5697

    PubMed  CAS  Google Scholar 

  89. Stins MF, Badger J, Sik Kim K (2001) Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb Pathog 30: 19–28

    Article  PubMed  CAS  Google Scholar 

  90. Stins MF, Prasadarao NV, Zhou J, Arditi M, Kim KS (1997) Bovine brain microvascular endothelial cells transfected with SV40-large T antigen: development of an immortalized cell line to study pathophysiology of CNS disease. In Vitro Cell Dev Biol Anim 33: 243–247

    Article  PubMed  CAS  Google Scholar 

  91. Doran KS, Liu GY, Nizet V (2003) Group B streptococcal beta-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. J Clin Invest 112: 736–744

    Article  PubMed  CAS  Google Scholar 

  92. Charland N, Nizet V, Rubens CE, Kim KS, Lacouture S, Gottschalk M (2000) Streptococcus suis serotype 2 interactions with human brain microvascular endothelial cells. Infect Immun 68: 637–643

    Article  PubMed  CAS  Google Scholar 

  93. Sokolova O, Heppel N, Jagerhuber R, Kim KS, Frosch M, Eigenthaler M, Schubert-Unkmeir A (2004) Interaction of Neisseria meningitidis with human brain microvascular endothelial cells: role of MAP-and tyrosine kinases in invasion and inflammatory cytokine release. Cell Microbiol 6: 1153–1166

    Article  PubMed  CAS  Google Scholar 

  94. Schroten H, Spors B, Hucke C, Stins M, Kim KS, Adam R, Daubener W (2001) Potential role of human brain microvascular endothelial cells in the pathogenesis of brain abscess: inhibition of Staphylococcus aureus by activation of indoleamine 2,3-dioxygenase. Neuropediatrics 32: 206–210

    Article  PubMed  CAS  Google Scholar 

  95. Daines DA, Jarisch J, Smith AL (2004) Identification and characterization of a non-typeable Haemophilus influenzae putative toxin-antitoxin locus. BMC Microbiol 4: 30

    Article  PubMed  CAS  Google Scholar 

  96. Teifel M, Friedl P (1996) Establishment of the permanent microvascular endothelial cell line PBMEC/C1-2 from porcine brains. Exp Cell Res 228: 50–57

    Article  PubMed  CAS  Google Scholar 

  97. Benga L, Friedl P, Valentin-Weigand P (2005) Adherence of Streptococcus suis to porcine endothelial cells. J Vet Med B Infect Dis Vet Public Health 52: 392–395

    PubMed  CAS  Google Scholar 

  98. Vanier G, Szczotka A, Friedl P, Lacouture S, Jacques M, Gottschalk M (2006) Haemophilus parasuis invades porcine brain microvascular endothelial cells. Microbiology 152: 135–142

    Article  PubMed  CAS  Google Scholar 

  99. Deli MA, Abraham CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25: 59–127

    Article  PubMed  Google Scholar 

  100. Ruffer C, Strey A, Janning A, Kim KS, Gerke V (2004) Cell-cell junctions of dermal microvascular endothelial cells contain tight and adherens junction proteins in spatial proximity. Biochemistry 43: 5360–5369

    Article  PubMed  CAS  Google Scholar 

  101. Tsutsumi M, Skinner MK, Sanders-Bush E (1989) Transferrin gene expression and synthesis by cultured choroid plexus epithelial cells. J Biol Chem 264: 9626–9631

    PubMed  CAS  Google Scholar 

  102. Crook RB, Kasagami H, Prusiner SB (1981) Culture and characterization of epithelial cells from bovine choroid plexus. J Neurochem 37: 845–854

    Article  PubMed  CAS  Google Scholar 

  103. Ramanathan VK, Hui AC, Brett CM, Giacomini KM (1996) Primary cell culture of the rabbit choroid plexus: An experimental system to investigate membrane transport. Pharm Res 13: 952–956

    Article  PubMed  CAS  Google Scholar 

  104. Sanders-Bush E, Breeding M (1991) Choroid plexus epithelial cells in primary culture: a model of 5HT1C receptor activation by hallucinogenic drugs. Psychopharmacology (Berl) 105: 340–346

    Article  CAS  Google Scholar 

  105. Southwell BR, Duan W, Alcorn D, Brack C, Richardson SJ, Köhrle J, Schreiber G (1993) Thyroxine transport to the brain: role of protein synthesis by the choroid plexus. Endocrinology 133: 2116–2126

    Article  PubMed  CAS  Google Scholar 

  106. Strazielle N, Ghersi-Egea JF (1999) Demonstration of a coupled metabolismefflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics. J Neurosci 19: 6275–6289

    PubMed  CAS  Google Scholar 

  107. Villalobos AR, Parmelee JT, Pritchard JB (1997) Functional characterization of choroid plexus epithelial cells in primary culture. J Pharmacol Exp Ther 282: 1109–1116

    PubMed  CAS  Google Scholar 

  108. Gath U, Hakvoort A, Wegener J, Decker S, Galla HJ (1997) Porcine choroid plexus cells in culture: expression of polarized phenotype, maintenance of barrier properties and apical secretion of CSF-components. Eur J Cell Biol 74, 68–78

    PubMed  CAS  Google Scholar 

  109. Adam RA, Tenenbaum T, Valentin-Weigand P, Laryea M, Schwahn B, Angelow S, Galla HJ, Daubener W, Schroten H (2004) Porcine choroid plexus epithelial cells induce Streptococcus suis bacteriostasis in vitro. Infect Immun 72: 3084–3087

    Article  PubMed  CAS  Google Scholar 

  110. Tenenbaum T, Adam R, Eggelnpohler I, Matalon D, Seibt AK, Novotny GE, Galla HJ, Schroten H (2005) Strain-dependent disruption of blood-cerebrospinal fluid barrier by Streptococcus suis in vitro. FEMS Immunol Med Microbiol 44: 25–34

    Article  PubMed  CAS  Google Scholar 

  111. Tenenbaum T, Essmann F, Adam R, Seibt A, Janicke RU, Novotny GE, Galla HJ, Schroten H (2006) Cell death, caspase activation, and HMGB1 release of porcine choroid plexus epithelial cells during Streptococcus suis infection in vitro. Brain Res 1100: 1–12

    Article  PubMed  CAS  Google Scholar 

  112. Kitazawa T, Hosoya K, Watanabe M, Takashima T, Ohtsuki S, Takanaga H, Ueda M, Yanai N, Obinata M, Terasaki T (2001) Characterization of the amino acid transport of new immortalized choroid plexus epithelial cell lines: a novel in vitro system for investigating transport functions at the blood-cerebrospinal fluid barrier. Pharm Res 18: 16–22

    Article  PubMed  CAS  Google Scholar 

  113. Zheng W, Zhao Q (2002) Establishment and characterization of an immortalized Z310 choroidal epithelial cell line from murine choroid plexus. Brain Res 958: 371–380

    Article  PubMed  CAS  Google Scholar 

  114. Torchio C, Trowbridge RS (1977) Ovine cells: their long-term cultivation and susceptibility to visna virus. In Vitro 13: 252–259

    Article  PubMed  CAS  Google Scholar 

  115. Kim KS (2001) Escherichia coli translocation at the blood-brain barrier. Infect Immun 69: 5217–5222

    Article  PubMed  CAS  Google Scholar 

  116. Unkmeir A, Latsch K, Dietrich G, Wintermeyer E, Schinke B, Schwender S, Kim KS, Eigenthaler M, Frosch M (2002) Fibronectin mediates Opc-dependent internalization of Neisseria meningitidis in human brain microvascular endothelial cells. Mol Microbiol 46: 933–946

    Article  PubMed  CAS  Google Scholar 

  117. Ring A, Weiser JN, Tuomanen EI (1998) Pneumococcal trafficking across the blood-brain barrier. Molecular analysis of a novel bidirectional pathway. J Clin Invest 102: 347–360

    PubMed  CAS  Google Scholar 

  118. Tenenbaum T, Bloier C, Adam R, Reinscheid DJ, Schroten H (2005) Adherence to and invasion of human brain microvascular endothelial cells are promoted by fibrinogen-binding protein FbsA of Streptococcus agalactiae. Infect Immun 73: 4404–4409

    Article  PubMed  CAS  Google Scholar 

  119. Nizet V, Kim KS, Stins M, Jonas M, Chi EY, Nguyen D, Rubens CE (1997) Invasion of brain microvascular endothelial cells by group B streptococci. Infect Immun 65: 5074–5081

    PubMed  CAS  Google Scholar 

  120. Greiffenberg L, Goebel W, Kim KS, Weiglein I, Bubert A, Engelbrecht F, Stins M, Kuhn M (1998) Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: InlB-dependent invasion, long-term intracellular growth, and spread from macrophages to endothelial cells. Infect Immun 66: 5260–5267

    PubMed  CAS  Google Scholar 

  121. Jain SK, Paul-Satyaseela M, Lamichhane G, Kim KS, Bishai WR (2006) Mycobacterium tuberculosis invasion and traversal across an in vitro human blood-brain barrier as a pathogenic mechanism for central nervous system tuberculosis. J Infect Dis 193: 1287–1295

    Article  PubMed  CAS  Google Scholar 

  122. Jong AY, Stins MF, Huang SH, Chen SH, Kim KS (2001) Traversal of Candida albicans across human blood-brain barrier in vitro. Infect Immun 69: 4536–4544

    Article  PubMed  CAS  Google Scholar 

  123. Chang YC, Stins MF, McCaffery MJ, Miller GF, Pare DR, Dam T, Paul-Satyaseela M, Kim KS, Kwon-Chung KJ (2004) Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect Immun 72: 4985–4995

    Article  PubMed  CAS  Google Scholar 

  124. Jedrzejas MJ (2001) Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev 65: 187–207

    Article  PubMed  CAS  Google Scholar 

  125. Tunkel AR, Wispelwey B, Quagliarello VJ, Rosser SW, Lesse AJ, Hansen EJ, Scheld WM (1992) Pathophysiology of blood-brain barrier alterations during experimental Haemophilus influenzae meningitis. J Infect Dis 165(Suppl 1): S119–120

    PubMed  Google Scholar 

  126. Grab DJ, Perides G, Dumler JS, Kim KJ, Park J, Kim YV, Nikolskaia O, Choi KS, Stins MF, Kim KS (2005) Borrelia burgdorferi, host-derived proteases, and the blood-brain barrier. Infect Immun 73: 1014–1022

    Article  PubMed  CAS  Google Scholar 

  127. Nikolskaia OV, Kim YV, Kovbasnjuk O, Kim KJ, Grab DJ (2006) Entry of Trypanosoma brucei gambiense into microvascular endothelial cells of the human blood-brain barrier. Int J Parasitol 36: 513–519

    Article  PubMed  CAS  Google Scholar 

  128. Drevets DA, Leenen PJ, Greenfield RA (2004) Invasion of the central nervous system by intracellular bacteria. Clin Microbiol Rev 17: 323–347

    Article  PubMed  CAS  Google Scholar 

  129. Join-Lambert OF, Ezine S, Le Monnier A, Jaubert F, Okabe M, Berche P, Kayal S (2005) Listeria monocytogenes-infected bone marrow myeloid cells promote bacterial invasion of the central nervous system. Cell Microbiol 7: 167–180

    Article  PubMed  CAS  Google Scholar 

  130. Antal EA, Loberg EM, Bracht P, Melby KK, Maehlen J (2001) Evidence for intraaxonal spread of Listeria monocytogenes from the periphery to the central nervous system. Brain Pathol 11: 432–438

    Article  PubMed  CAS  Google Scholar 

  131. Valentin-Weigand P, Benkel P, Rohde M, Chatwal GS (1996) Entry and intracellular survival of group B streptococci in J774 macrophages. Infect Immun 64: 2467–2473

    CAS  Google Scholar 

  132. Sukumaran SK, Shimada H, Prasadarao NV (2003) Entry and intracellular replication of Escherichia coli K1 in macrophages require expression of outer membrane protein A. Infect Immun 71: 5951–5961

    Article  PubMed  CAS  Google Scholar 

  133. Segura MA, Cleroux P, Gottschalk M (1998) Streptococcus suis and group B Streptococcus differ in their interactions with murine macrophages. FEMS Immunol Med Microbiol 21: 189–195

    Article  PubMed  CAS  Google Scholar 

  134. Gottschalk M, Segura M (2000) The pathogenesis of the meningitis caused by Streptococcus suis: the unresolved questions. Vet Microbiol 76: 259–272

    Article  PubMed  CAS  Google Scholar 

  135. Teng CH, Cai M, Shin S, Xie Y, Kim KJ, Khan NA, Di Cello F, Kim KS (2005) Escherichia coli K1 RS218 interacts with human brain microvascular endothelial cells via type 1 fimbria bacteria in the fimbriated state. Infect Immun 73: 2923–2931

    Article  PubMed  CAS  Google Scholar 

  136. Stins MF, Prasadarao NV, Ibric L, Wass CA, Luckett P, Kim KS (1994) Binding characteristics of S fimbriated Escherichia coli to isolated brain microvascular endothelial cells. Am J Pathol 145: 1228–1236

    PubMed  CAS  Google Scholar 

  137. Prasadarao NV, Wass CA, Kim KS (1997) Identification and characterization of S fimbria-binding sialoglycoproteins on brain microvascular endothelial cells. Infect Immun 65: 2852–2860

    PubMed  CAS  Google Scholar 

  138. Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I, Tuomanen EI (1995) Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377: 435–438

    Article  PubMed  CAS  Google Scholar 

  139. Orihuela CJ, Radin JN, Sublett JE, Gao G, Kaushal D, Tuomanen EI (2004) Microarray analysis of pneumococcal gene expression during invasive disease. Infect Immun 72: 5582–5596

    Article  PubMed  CAS  Google Scholar 

  140. Zhang JR, Mostov KE, Lamm ME, Nanno M, Shimida S, Ohwaki M, Tuomanen E (2000) The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102: 827–837

    Article  PubMed  CAS  Google Scholar 

  141. Pracht D, Elm C, Gerber J, Bergmann S, Rohde M, Seiler M, Kim KS, Jenkinson HF, Nau R, Hammerschmidt S (2005) PavA of Streptococcus pneumoniae modulates adherence, invasion, and meningeal inflammation. Infect Immun 73: 2680–2689

    Article  PubMed  CAS  Google Scholar 

  142. Hirst RA, Sikand KS, Rutman A, Mitchell TJ, Andrew PW, O’Callaghan C (2000) Relative roles of pneumolysin and hydrogen peroxide from Streptococcus pneumoniae in inhibition of ependymal ciliary beat frequency. Infect Immun 68: 1557–1562

    Article  PubMed  CAS  Google Scholar 

  143. Hirst RA, Gosai B, Rutman A, Andrew PW, O’Callaghan C (2003) Streptococcus pneumoniae damages the ciliated ependyma of the brain during meningitis. Infect Immun 71: 6095–6100

    Article  PubMed  CAS  Google Scholar 

  144. Deghmane AE, Giorgini D, Larribe M, Alonso JM, Taha MK (2002) Down-regulation of pili and capsule of Neisseria meningitidis upon contact with epithelial cells is mediated by CrgA regulatory protein. Mol Microbiol 43: 1555–1564

    Article  PubMed  CAS  Google Scholar 

  145. Vogel U, Frosch M (1999) Mechanisms of neisserial serum resistance. Mol Microbiol 32: 1133–1139

    Article  PubMed  CAS  Google Scholar 

  146. Nassif X, Bourdoulous S, Eugene E, Couraud PO (2002) How do extracellular pathogens cross the blood-brain barrier? Trends Microbiol 10: 227–232

    Article  PubMed  CAS  Google Scholar 

  147. Jobin MC, Fortin J, Willson PJ, Gottschalk M, Grenier D (2005) Acquisition of plasmin activity and induction of arachidonic acid release by Streptococcus suis in contact with human brain microvascular endothelial cells. FEMS Microbiol Lett 252: 105–111

    Article  PubMed  CAS  Google Scholar 

  148. Lesse AJ, Moxon ER, Zwahlen A, Scheld WM (1988) Role of cerebrospinal fluid pleocytosis and Haemophilus influenzae type b capsule on blood brain barrier permeability during experimental meningitis in the rat. J Clin Invest 82: 102–109

    Article  PubMed  CAS  Google Scholar 

  149. Tauber MG, Borschberg U, Sande MA (1988) Influence of granulocytes on brain edema, intracranial pressure, and cerebrospinal fluid concentrations of lactate and protein in experimental meningitis. J Infect Dis 157: 456–464

    PubMed  CAS  Google Scholar 

  150. Tan TQ, Smith CW, Hawkins EP, Mason EO Jr, Kaplan SL (1995) Hematogenous bacterial meningitis in an intercellular adhesion molecule-1-deficient infant mouse model. J Infect Dis 171: 342–349

    PubMed  CAS  Google Scholar 

  151. Adler-Shohet FC, Cheung MM, Hill M, Lieberman JM (2003) Aseptic meningitis in infants younger than six months of age hospitalized with urinary tract infections. Pediatr Infect Dis J 22: 1039–1042

    Article  PubMed  Google Scholar 

  152. Finkelstein Y, Mosseri R, Garty BZ (2001) Concomitant aseptic meningitis and bacterial urinary tract infection in young febrile infants. Pediatr Infect Dis J 20: 630–632

    Article  PubMed  CAS  Google Scholar 

  153. Felgenhauer K, Kober D (1985) Apurulent bacterial meningitis (compartmental leucopenia in purulent meningitis). J Neurol 232: 157–161

    Article  PubMed  CAS  Google Scholar 

  154. Lukes SA, Posner JB, Nielsen S, Armstrong D (1984) Bacterial infections of the CNS in neutropenic patients. Neurology 34: 269–275

    PubMed  CAS  Google Scholar 

  155. Zwijnenburg PJ, van der Poll T, Roord JJ, van Furth AM (2006) Chemotactic factors in cerebrospinal fluid during bacterial meningitis. Infect Immun 74: 1445–1451

    Article  PubMed  CAS  Google Scholar 

  156. Schoning B, Elepfandt P, Daberkow N, Rupprecht S, Stockhammer F, Stoltenburg G, Volk HD, Woiciechowsky C (2002) Differences in immune cell invasion into the cerebrospinal fluid and brain parenchyma during cerebral infusion of interleukin-1beta. Neurol Sci 23: 211–218

    Article  PubMed  CAS  Google Scholar 

  157. Kubes P, Ward PA (2000) Leukocyte recruitment and the acute inflammatory response. Brain Pathol 10: 127–135

    Article  PubMed  CAS  Google Scholar 

  158. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76: 301–314

    Article  PubMed  CAS  Google Scholar 

  159. Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26: 485–495

    Article  PubMed  CAS  Google Scholar 

  160. Wilson SL, Drevets DA (1998) Listeria monocytogenes infection and activation of human brain microvascular endothelial cells. J Infect Dis 178: 1658–1666

    Article  PubMed  CAS  Google Scholar 

  161. Tripathi AK, Sullivan DJ, Stins MF (2006) Plasmodium falciparum-infected erythrocytes increase intercellular adhesion molecule 1 expression on brain endothelium through NF-kappaB. Infect Immun 74: 3262–3270

    Article  PubMed  CAS  Google Scholar 

  162. Weber JR, Angstwurm K, Burger W, Einhaupl KM, Dirnagl U (1995) Anti ICAM-1 (CD 54) monoclonal antibody reduces inflammatory changes in experimental bacterial meningitis. J Neuroimmunol 63: 63–68

    Article  PubMed  CAS  Google Scholar 

  163. Engelhardt B, Wolburg-Buchholz K, Wolburg H (2001) Involvement of the choroid plexus in central nervous system inflammation. Microsc Res Tech 52: 112–129

    Article  PubMed  CAS  Google Scholar 

  164. Lahrtz F, Piali L, Spanaus KS, Seebach J, Fontana A (1998) Chemokines and chemotaxis of leukocytes in infectious meningitis. J Neuroimmunol 85: 33–43

    Article  PubMed  CAS  Google Scholar 

  165. Tang RB, Lee BH, Chung RL, Chen SJ, Wong TT (2001) Interleukin-1beta and tumor necrosis factor-alpha in cerebrospinal fluid of children with bacterial meningitis. Childs Nerv Syst 17: 453–456

    Article  PubMed  CAS  Google Scholar 

  166. Andjelkovic AV, Pachter JS (2000) Characterization of binding sites for chemokines MCP-1 and MIP-1alpha on human brain microvessels. J Neurochem 75: 1898–1906

    Article  PubMed  CAS  Google Scholar 

  167. Prat A, Biernacki K, Wosik K, Antel JP (2001) Glial cell influence on the human blood-brain barrier. Glia 36: 145–155

    Article  PubMed  CAS  Google Scholar 

  168. Middleton J, Neil S, Wintle J, Clark-Lewis I, Moore H, Lam C, Auer M, Hub E, Rot A (1997) Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91: 385–395

    Article  PubMed  CAS  Google Scholar 

  169. Shukaliak JA, Dorovini-Zis K (2000) Expression of the beta-chemokines RANTES and MIP-1 beta by human brain microvessel endothelial cells in primary culture. J Neuropathol Exp Neurol 59: 339–352

    PubMed  CAS  Google Scholar 

  170. Fabry Z, Fitzsimmons KM, Herlein JA, Moninger TO, Dobbs MB, Hart MN (1993) Production of the cytokines interleukin 1 and 6 by murine brain microvessel endothelium and smooth muscle pericytes. J Neuroimmunol 47: 23–34

    Article  PubMed  CAS  Google Scholar 

  171. Frigerio S, Gelati M, Ciusani E, Corsini E, Dufour A, Massa G, Salmaggi A (1998) Immunocompetence of human microvascular brain endothelial cells: cytokine regulation of IL-1beta, MCP-1, IL-10, sICAM-1 and sVCAM-1. J Neurol 245: 727–730

    Article  PubMed  CAS  Google Scholar 

  172. Armah H, Wired EK, Dodoo AK, Adjei AA, Tettey Y, Gyasi R (2005) Cytokines and adhesion molecules expression in the brain in human cerebral malaria. Int J Environ Res Public Health 2: 123–131

    PubMed  CAS  Google Scholar 

  173. Hickey WF (2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36: 118–124

    Article  PubMed  CAS  Google Scholar 

  174. Thomas WE (1999) Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev 31: 42–57

    Article  PubMed  CAS  Google Scholar 

  175. Williams K, Alvarez X, Lackner AA (2001) Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia 36: 156–164

    Article  PubMed  CAS  Google Scholar 

  176. Polfliet MM, Goede PH, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK (2001) A method for the selective depletion of perivascular and meningeal macrophages in the central nervous system. J Neuroimmunol 116: 188–195

    Article  PubMed  CAS  Google Scholar 

  177. Polfliet MM, Zwijnenburg PJ, van Furth AM, van der Poll T, Dopp EA, Renardel de Lavalette C, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK (2001) Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis. J Immunol 167: 4644–4650

    PubMed  CAS  Google Scholar 

  178. Ling EA, Kaur C, Lu J (1998) Origin, nature, and some functional considerations of intraventricular macrophages, with special reference to the epiplexus cells. Microsc Res Tech 41: 43–56

    Article  PubMed  CAS  Google Scholar 

  179. McMenamin PG (1999) Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J Comp Neurol 405: 553–562

    Article  PubMed  CAS  Google Scholar 

  180. Lu J, Kaur C, Ling EA (1994) Up-regulation of surface antigens on epiplexus cells in postnatal rats following intraperitoneal injections of lipopolysaccharide. Neuroscience 63: 1169–1178

    Article  PubMed  CAS  Google Scholar 

  181. Eriksson C, Nobel S, Winblad B, Schultzberg M (2000) Expression of interleukin 1 alpha and beta, and interleukin 1 receptor antagonist mRNA in the rat central nervous system after peripheral administration of lipopolysaccharides. Cytokine 12: 423–431

    Article  PubMed  CAS  Google Scholar 

  182. Serot JM, Foliguet B, Bene MC, Faure GC (1997) Ultrastructural and immunohistological evidence for dendritic-like cells within human choroid plexus epithelium. Neuroreport 8: 1995–1998

    Article  PubMed  CAS  Google Scholar 

  183. Ryan G, Grimes T, Brankin B, Mabruk MJ, Hosie MJ, Jarrett O, Callanan JJ (2005) Neuropathology associated with feline immunodeficiency virus infection highlights prominent lymphocyte trafficking through both the blood-brain and blood-choroid plexus barriers. J Neurovirol 11: 337–345

    Article  PubMed  CAS  Google Scholar 

  184. McMenamin PG, Wealthall RJ, Deverall M, Cooper SJ, Griffin B (2003) Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy. Cell Tissue Res 313: 259–269

    Article  PubMed  Google Scholar 

  185. Nguyen MD, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3: 216–227

    Article  PubMed  CAS  Google Scholar 

  186. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11: 443–451

    Article  PubMed  CAS  Google Scholar 

  187. Laflamme N, Rivest S (2001) Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 15: 155–163

    Article  PubMed  CAS  Google Scholar 

  188. Laflamme N, Echchannaoui H, Landmann R, Rivest S (2003) Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria. Eur J Immunol 33: 1127–1138

    Article  PubMed  CAS  Google Scholar 

  189. Mogensen TH, Paludan SR, Kilian M, Ostergaard L (2006) Live Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis activate the inflammatory response through Toll-like receptors 2, 4, and 9 in species-specific patterns. J Leukoc Biol 80: 267–277

    Article  PubMed  CAS  Google Scholar 

  190. Koedel U, Angele B, Rupprecht T, Wagner H, Roggenkamp A, Pfister HW, Kirschning CJ (2003) Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J Immunol 170: 438–444

    PubMed  CAS  Google Scholar 

  191. Adam R, Russing D, Adams O, Ailyati A, Sik Kim K, Schroten H, Daubener W (2005) Role of human brain microvascular endothelial cells during central nervous system infection. Significance of indoleamine 2,3-dioxygenase in antimicrobial defence and immunoregulation. Thromb Haemost 94: 341–346

    PubMed  CAS  Google Scholar 

  192. Daubener W, Spors B, Hucke C, Adam R, Stins M, Kim KS, Schroten H (2001) Restriction of Toxoplasma gondii growth in human brain microvascular endothelial cells by activation of indoleamine 2,3-dioxygenase. Infect Immun 69: 6527–6531

    Article  PubMed  CAS  Google Scholar 

  193. Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, Dilling LA, Elia J, Kruesi MJ, Lackner A et al (1992) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 115: 1249–1273

    Article  PubMed  Google Scholar 

  194. Heyes MP, Saito K, Milstien S, Schiff SJ (1995) Quinolinic acid in tumors, hemorrhage and bacterial infections of the central nervous system in children. J Neurol Sci 133: 112–118

    Article  PubMed  CAS  Google Scholar 

  195. Fujiwara M, Shibata M, Watanabe Y, Nukiwa T, Hirata F, Mizuno N, Hayaishi O (1978) Indoleamine 2,3-dioxygenase. Formation of L-kynurenine from Ltryptophan in cultured rabbit fineal gland. J Biol Chem 253: 6081–6085

    PubMed  CAS  Google Scholar 

  196. Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49: 15–23

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Adam, R., Kim, K.S., Schroten, H. (2007). Role of the blood-brain barrier and blood-CSF barrier in the pathogenesis of bacterial meningitis. In: Schroten, H., Wirth, S. (eds) Pediatric Infectious Diseases Revisited. Birkhäuser Advances in Infectious Diseases. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8099-1_8

Download citation

Publish with us

Policies and ethics