Skip to main content

Root-Finding with Eigen-Solving

  • Conference paper
Symbolic-Numeric Computation

Abstract

We survey and extend the recent progress in polynomial root-finding via eigen-solving for highly structured generalized companion matrices. We cover the selection of eigen-solvers and matrices and show the benefits of exploiting matrix structure. No good estimates for the rate of global convergence of the eigen-solvers are known, but according to ample empirical evidence it is sufficient to use a constant number of iteration steps per eigenvalue. If so, the resulting root-finders are optimal up to a constant factor because they use linear arithmetic time per step and perform with a constant (double) precision. Some by-products of our study are of independent interest. The algorithms can be extended to solving secular equations

Supported by PSC CUNY Awards 66437-0035 and 67297-0036.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Aberth, Iteration Methods For Finding All Zeros of a Polynomial Simultaneously, Math. Comp., 27,122, 339–344, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Barnett, A Companion Matrix Analogue for Orthogonal Polynomials, Linear Algebra and Its Applications, 12,3, 97–208, 1975.

    Article  Google Scholar 

  3. S. Barnett, Polynomials and Linear Control Systems, Marcel Dekker, New York, 1983.

    MATH  Google Scholar 

  4. D. A. Bini, Numerical Computation of Polynomial Zeros by Means of Aberth’s Method, Numerical Algorithms, 13,3–4, 179–200, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1993.

    MATH  Google Scholar 

  6. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst, editors, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000.

    MATH  Google Scholar 

  7. D. A. Bini, G. Fiorentino, Design, Analysis, and Implementation of a Multiprecision Polynomial Rootfinder, Numerical Algorithms, 23, 127–173, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. A. Bini, L. Gemignani, B. Meini, Computations with Infinite Toeplitz Matrices and Polynomials, Linear Algebra and Its Applications, 343–344, 21–61, 2002.

    Article  MathSciNet  Google Scholar 

  9. D. A. Bini, L. Gemignani, V. Y. Pan, Inverse Power and Durand/Kerner Iteration for Univariate Polynomial Root-finding, Computers and Mathematics (with Applications), 47,2/3, 447–459, 2004. (Also Technical Report TR 2002 020, CUNY Ph.D. Program in Computer Science, Graduate Center, City University of New York, 2002.)

    Article  MATH  MathSciNet  Google Scholar 

  10. D. A. Bini, L. Gemignani, V. Y. Pan, Improved Initialization of the Accelerated and Robust QR-like Polynomial Root-finding, Electronic Transactions on Numerical Analysis, 17, 195–205, 2004. Proc. version in Proceedings of the Seventh International Workshop on Computer Algebra in Scientific Computing (CASC ?4), St. Petersburg, Russia (July 2004), (edited by E. W. Mayr, V. G. Ganzha, E. V. Vorozhtzov), 39–50, Technische Univ. München, Germany, 2004.

    MATH  MathSciNet  Google Scholar 

  11. D. A. Bini, L. Gemignani, V. Y. Pan, Fast and Stable QR Eigenvalue Algorithms for Generalized Companion Matrices and Secular Equation, Numerische Math., 3, 373–408, 2005. (Also Technical Report 1470, Department of Math., University of Pisa, Pisa, Italy, July 2003.)

    Article  MathSciNet  Google Scholar 

  12. G. E. P. Box, G. M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, California, 1976.

    MATH  Google Scholar 

  13. D. Bini, V. Y. Pan, Polynomial and Matrix Computations, Volume 1: Fundamental Algorithms, Birkhäuser, Boston, 1994.

    Google Scholar 

  14. D. Bini, V. Y. Pan, Graeffe’s, Chebyshev, and Cardinal’s Processes for Splitting a Polynomial into Factors, J. Complexity, 12, 492–511, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Bini, V. Y. Pan, Computing Matrix Eigenvalues and Polynomial Zeros Where the Output Is Real, SIAM Journal on Computing, 27,4, 1099–1115, 1998. Proc. Version: Parallel Complexity of Tridiagonal Symmetric Eigenvalue Problem, in Proc. 2nd Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA?1), 384–393, ACM Press, New York, and SIAM Publications, Philadelphia, January 1991.

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Börsch-Supan, A-posteriori Error Bounds for the Zeros of Polynomials, Numerische Math., 5, 380–398, 1963.

    Article  Google Scholar 

  17. C. Carstensen, Linear Construction of Companion Matrices, Linear Algebra and Its Applications, 149, 191–214, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. P. Cardinal, On Two Iterative Methods for Approximating the Roots of a Polynomial, Lectures in Applied Mathematics, 32 (Proceedings of AMSSIAM Summer Seminar: Mathematics of Numerical Analysis: Real Number Algorithms (J. Renegar, M. Shub, and S. Smale, editors), Park City, Utah, 1995), 165–188, American Mathematical Society, Providence, Rhode Island, 1996.

    Google Scholar 

  19. R. M. Corless, P. M. Gianni, B. M. Trager, S. M. Watt, The Singular Value Decomposition for Polynomail Systems, Proc. Intern. Symposium on Symbolic and Algebriac Computation (ISSAC’95), 195–207, ACM Press, New York, 1995.

    Google Scholar 

  20. D. Coppersmith, C. A. Neff, Roots of a Polynomial and Its Derivatives. Proc. of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’94), 271–279, ACM Press, New York, and SIAM Publications, Philadelphia, 1994.

    Google Scholar 

  21. E. Durand, Solutions numéeriques des éequations algéebriques, Tome 1: Equations du type F(X)=0; Racines d’un polynôme, Masson, Paris, 1960.

    Google Scholar 

  22. Q. Du, M. Jin, T. Y. Li, Z. Zeng, Quasi-Laguerre Iteration in Solving Symmetric Tridiagonal Eigenvalue Problems. SIAM J. Sci. Comput., 17,6, 1347–1368, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  23. Q. Du, M. Jin, T. Y. Li, Z. Zeng, The Quasi-Laguerre Iteration. Math. of Computation. 66,217, 345–361, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  24. C. J. Demeure, C. T. Mullis, The Euclid Algorithm and Fast Computation of Cross-Covariance and Autocovariance Sequences, IEEE Trans. Acoust., Speech and Signal Processing, 37, 545–552, 1989.

    Article  MATH  Google Scholar 

  25. C. J. Demeure, C. T. Mullis, A Newton-Raphson Method for Moving-Average Spectral Factorization Using the Euclid Algorithm, IEEE Trans. Acoust., Speech and Signal Processing, 38, 1697–1709, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  26. L. W. Ehrlich, A Modified Newton Method for Polynomials, Comm. of ACM, 10, 107–108, 1967.

    Article  MATH  Google Scholar 

  27. L. Elsner, A Remark on Simultaneous Inclusions of the Zeros of a Polynomial by Gershgörin’s Theorem, Numerische Math., 21, 425–427, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  28. E. Z. Emiris, B. Mourrain, V. Y. Pan, Guest Editors, Algebraic and Numerical Algorithms, Special Issue of Theoretical Computer Science, 315,2–3, 307–672, 2004.

    Article  MathSciNet  Google Scholar 

  29. I. Z. Emiris, V. Y. Pan, Symbolic and Numerical Methods for Exploiting Structure in Constructing Resultant Matrices, J. of Symbolic Computation, 33, 393–413, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Fiedler, Expressing a Polynomial As the Characteristic Polynomial of a Symmetric Matrix, Linear Algebra and Its Applications, 141, 265–270, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Fortune, An Iterated Eigenvalue Algorithm for Approximating Roots of Univariate Polynomials, J. of Symbolic Computation, 33,5, 627–646, 2002. Proc. version in Proc. Intern. Symp. on Symbolic and Algebraic Computation (ISSAC’01), 121–128, ACM Press, New York, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  32. A. Gel’fond, Differenzenrechnung, Deutsher Verlag Der Wissenschaften, Berlin, 1958. (Russian edition: Moscow, 1952.)

    MATH  Google Scholar 

  33. G. H. Golub, Some Modified Matrix Eigenvalue Problems, SIAM Review, 15, 318–334, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  34. J. R. Gilbert, H. Hafsteinsson, Parallel Symbolic Factorization of Sparse Linear Systems, Parallel Computing, 14, 151–162, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Gao, E. Kaltofen, J. May, Z. Yang, S. Zhi, Approximate Factorization of Multivariate Polynomial via Differential Equations, Proc. International Symposium on Symbolic and Algebraic Computaion (ISSAC’04), 167–174, ACM Press, New York, 2004.

    Google Scholar 

  36. G. H. Golub, C. F. Van Loan, Matrix Computations, 3rd edition, The Johns Hopkins University Press, Baltimore, Maryland, 1996.

    MATH  Google Scholar 

  37. J. R. Gilbert, R. Schreiber, Highly Parallel Sparse Cholesky Factorization, SIAM J. on Scientific Computing, 13, 1151–1172, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  38. E. Hansen, M. Patrick, J. Rusnack, Some Modification of Laguerre’s Method, BIT, 17, 409–417, 1977.

    Article  MATH  Google Scholar 

  39. M. A. Jenkins, J. F. Traub, A Three-Stage Variable-Shift Iteration for Polynomial Zeros and Its Relation to Generalized Rayleigh Iteration, Numerische Math., 14, 252–263, 1969/1970.

    Article  MathSciNet  Google Scholar 

  40. M. A. Jenkins, J. F. Traub, A Three-Stage Algorithm for Real Polynomials Using Quadratic Iteration, SIAM J. on Numerical Analysis, 7, 545–566, 1970.

    Article  MathSciNet  Google Scholar 

  41. J. F. Jónsson, S. Vavasis, Solving Polynomials with Small Leading Coefficients, SIAM J. on Matrix Analysis and Applications, 26,2, 400–412, 2004.

    Article  MATH  Google Scholar 

  42. I. O. Kerner, Ein Gesamtschrittverfahren zur Berechung der Nullstellen von Polynomen, Numerische Math., 8, 290–294, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  43. P. Kirrinnis, Polynomial Factorization and Partial Fraction Decomposition by Simultaneous Newton’s Iteration, J. of Complexity, 14, 378–444, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  44. M. Lang, B. C. Frenzel, Polynomial Root-Finding, IEEE Signal Processing Letters, 1,10, 141–143, 1994.

    Article  Google Scholar 

  45. R. J. Lipton, D. Rose, R. E. Tarjan, Generalized Nested Dissection, SIAM J. on Numerical Analysis, 16,2, 346–358, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  46. B. Li, Z. Yang, L. Zhi, Fast Low Rank Approximation of a Sylvester Matrix by Structured Total Least Norm, Journal JSSAC, 11, 165–174, 2005.

    Google Scholar 

  47. K. Madsen, A Root-Finding Algorithm Based on Newton’s Method, BIT, 13, 71–75, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  48. A. Melman, A Unifying Convergence Analysis of Second-Order Methods for Secular Equations, Math. Comp., 66, 333–344, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  49. J. M. McNamee, Bibliography on Roots of Polynomials, J. Computational and Applied Mathematics, 47, 391–394, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  50. J. M. McNamee, A Supplementary Bibliography on Roots of Polynomials, J. Computational and Applied Mathematics, 78, 1, 1997.

    Article  MATH  Google Scholar 

  51. J. M. McNamee, An Updated Supplementary Bibliography on Roots of Polynomials, J. Computational and Applied Mathematics, 110, 305–306, 1999.

    Article  MATH  Google Scholar 

  52. J. M. McNamee, A 2002 Updated Supplementary Bibliography on Roots of Polynomials, J. Computational and Applied Mathematics, 142, 433–434, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  53. B. Mourrain, V. Y. Pan, Multivariate Polynomials, Duality and Structured Matrices, J. of Complexity, 16,1, 110–180, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  54. K. Madsen, J. Reid, Fortran Subroutines for Finding Polynomial Zeros, Report HL75/1172 (C.13), Computer Science and Systems Division, A. E. R. E. Harwell, Oxford, 1975.

    Google Scholar 

  55. F. Malek, R. Vaillancourt, Polynomial Zerofinding Iterative Matrix Algorithms, Computers and Math. with Applications, 29,1, 1–13, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  56. F. Malek, R. Vaillancourt, A Composite Polynomial Zerofinding Matrix Algorithm, Computers and Math. with Applications, 30,2, 37–47, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  57. NAG Fortran Library Manual, Mark 13, Vol. 1, 1988.

    Google Scholar 

  58. C. A. Neff, J. H. Reif, An O(n l+∈) Algorithm for the Complex Root Problem, Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Scinece (FOCS’94), 540–547, IEEE Computer Society Press, Los Alamitos, California, 1994.

    Chapter  Google Scholar 

  59. J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, SIAM, Philadelphia, 2000.

    MATH  Google Scholar 

  60. B. Parlett, Laguerre’s Method Applied to the Matrix Eigenvalue Problem, Math. of Computation, 18, 464–485, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  61. V. Y. Pan, Complexity of Computations with Matrices and Polynomials, SIAM Review, 34,2, 225–262, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  62. V. Y. Pan, Optimal (up to Polylog Factors) Sequential and Parallel Algorithms for Approximating Complex Polynomial Zeros, Proc. 27th Ann. ACM Symp. on Theory of Computing (STOC’95), 741–750, ACM Press, New York, May 1995.

    Google Scholar 

  63. V. Y. Pan, Optimal and Nearly Optimal Algorithms for Approximating Polynomial Zeros, Computers and Math. (with Applications), 31,12, 97–138, 1996.

    MATH  MathSciNet  Google Scholar 

  64. V. Y. Pan, Solving a Polynomial Equation: Some History and Recent Progress, SIAM Review, 39,2, 187–220, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  65. V. Y. Pan, Some Recent Algebraic/Numerical Algorithms, Electronic Proceedings of IMACS/ACA’98, 1998. http:www-troja.fjfi.cvut.cz/aca98/sessions/approximate/pan/

    Google Scholar 

  66. V. Y. Pan, Numerical Computation of a Polynomial GCD and Extensions, Information and Computation, 167,2, 71–85, 2001. Proc. version in Proc. of 9th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’98), 68–77, ACM Press, New York, and SIAM Publications, Philadelphia, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  67. V. Y. Pan, Approximating Complex Polynomial Zeros: Modified Quadtree (Weyl’s) Construction and Improved Newton’s Iteration, J. of Complexity, 16,1, 213–264, 2000.

    Article  MATH  Google Scholar 

  68. V. Y. Pan, Structured Matrices and Polynomials: Unified Superfast Algorithms, Birkhäuser/Springer, Boston/New York, 2001.

    MATH  Google Scholar 

  69. V. Y. Pan, Univariate Polynomials: Nearly Optimal Algorithms for Factorization and Rootfinding, Journal of Symbolic Computations, 33,5, 701–733, 2002. Proc. version in Proc. International Symp. on Symbolic and Algebraic Computation (ISSAC ?1), 253–267, ACM Press, New York, 2001.

    Article  MATH  Google Scholar 

  70. V. Y. Pan, Amended DSeSC Power Method for Polynomial Root-finding, Computers and Math. with Applications, 49,9–10, 1515–1524, 2005.

    Article  MATH  Google Scholar 

  71. V. Y. Pan, D. Ivolgin, B. Murphy, R. E. Rosholt, I. Taj-Eddin, Y. Tang, X. Yan, Additive Preconditioning and Aggregation in Matrix Computations, Computers and Math. with Applications, in press.

    Google Scholar 

  72. V. Y. Pan, B. Murphy, R. E. Rosholt, Y. Tang, Real Root-Finding, submitted to Computers and Math. (with Applications).

    Google Scholar 

  73. V. Y. Pan, B. Murphy, R. E. Rosholt, Y. Tang, X. Yan, W. Cao, Linking Arrow-head, DPR1, and TPR1 Matrix Structures, preprint, 2005. Proc. version (by V. Y. Pan) in Proc. of Annual Symposium on Discrete Algorithms (SODA’05), 1069–1078, ACM Press, New York, and SIAM Publications, Philadelphia, 2005.

    Google Scholar 

  74. V. Y. Pan, J. Reif, Fast and Efficient Parallel Solution of Sparse Linear Systems, SIAM J. on Computing, 22,6, 1227–1250, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  75. A. Schönhage, The Fundamental Theorem of Algebra in Terms of Computational Complexity, Mathematics Department, University of Tübingen, Germany, 1982.

    Google Scholar 

  76. G. W. Stewart, Matrix Algorithms, Volume II: Eigensystems, SIAM, Philadelphia, 1998.

    Google Scholar 

  77. T. R. Scavo, J. B. Thoo, On the Geometry of Halley’s Method., Amer. Math. Monthly, 102, 417–426, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  78. J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.

    MATH  Google Scholar 

  79. P. M. Van Dooren, Some Numerical Challenges in Control Theory. In Linear Algebra for Control Theory, Volume 62 of IMA Vol. Math. Appl., Springer, 1994.

    Google Scholar 

  80. K. Weierstrass, Neuer Beweis des Fundamentalsatzes der Algebra, Mathematische Werker, Tome III, Mayer und Müller, Berlin, 251–269, 1903.

    Google Scholar 

  81. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

    MATH  Google Scholar 

  82. V. Whitley, Certification of Algorithm 196: Müller’s Method for Finding Roots of Arbitrary Function, Comm. ACM, 11, 12–14, 1968.

    Article  Google Scholar 

  83. G. T. Wilson, Factorization of the Covariance Generating Function of a Pure Moving-average Process, SIAM J. Num. Anal., 6, 1–7, 1969.

    Article  MATH  Google Scholar 

  84. X. Zou, Analysis of the Quasi-Laguerre Method, Numerische Math., 82, 491–519, 1999.

    Article  MATH  Google Scholar 

  85. Z. Zeng, The Approximate GCD of Inexact Polynomials, Part I: a Univariate Algorithm, preprint, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Pan, V.Y. et al. (2007). Root-Finding with Eigen-Solving. In: Wang, D., Zhi, L. (eds) Symbolic-Numeric Computation. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7984-1_12

Download citation

Publish with us

Policies and ethics