Skip to main content

Decoherence and the Transition from Quantum to Classical — Revisited

  • Chapter
Quantum Decoherence

Part of the book series: Progress in Mathematical Physics ((PMP,volume 48))

Abstract

The environment surrounding a quantum system can, in effect, monitor some of the systems observables. As a result, the eigenstates of these observables continuously decohere and can behave like classical states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. A. Albrecht, Investigating Decoherence in a Simple System, Phys. Rev. D 46(12), 5504 (1992).

    Article  ADS  Google Scholar 

  2. J. R. Anglin and W. H. Zurek, Decoherence of Quantum Fields: Pointer States and Predictability, Phys. Rev. D 53(12), 7327 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  3. J. R. Anglin, J. P. Paz and W. H. Zurek, Deconstructing Decoherence, Phys. Rev. A 55(6), 4041 (1997).

    Article  ADS  Google Scholar 

  4. M. Arndt, O. Nairz, J. VosAndreae, C. Keller, G. van der Zouw, A. Zeilinger, Wave-Particle Duality of C-60 Molecules, Nature 401(6754), 680 (1999).

    Article  ADS  Google Scholar 

  5. A. Aspect, J. Dalibard and G. Roger, Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers, Phys. Rev. Lett. 49, 1804 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Aspect, P. Grangier and G. Rogier, Experimental Tests of Realistic Local Theories via Bell’s Theorem, Phys. Rev. Lett. 47, 460 (1981).

    Article  ADS  Google Scholar 

  7. J. S. Bell, On the Einstein Podolsky Rosen Paradox, Physics 1, 195 (1964).

    Google Scholar 

  8. D. Bohm, In Quantum Theory, Chap. 22, p. 611. Englewood Cliffs, NJ: Prentice Hall, 1951.

    Google Scholar 

  9. N. Bohr, The Quantum Postulate and Recent Development of Atomic Theory, Nature 121, 580 (1928). Reprinted in Quantum Theory and Measurement. Edited by Wheeler, J. A., and W. H. Zurek. Princeton, NJ: Princeton University Press.

    Article  MATH  ADS  Google Scholar 

  10. V.B. Braginsky, Y. I. Vorontsov and K. S. Thorne, Quantum Nondemolition Measurements, Science 209, 547 (1980).

    Article  ADS  Google Scholar 

  11. M. Brune, E. Hagley, J. Dreyer, X. Maitre, C. Wunderlich, J. M. Raimond and S. Haroche, Observing the Progressive Decoherence of the “Meter” in a Quantum Measurement, Phys. Rev. Lett. 77, 4887 (1996).

    Article  ADS  Google Scholar 

  12. A. O. Caldeira, and A. J. Leggett, Path Integral Approach to Quantum Brownian Motion, Physica A 121, 587 (1983a).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. —, Quantum Tunneling in a Dissipative System, Ann. Phys (N. Y.) 149(2), 374 (1983b).

    Article  ADS  Google Scholar 

  14. —, Influence of Damping on Quantum Interference: An Exactly Soluble Model, Phys. Rev. A 31, 1059 (1985).

    Article  ADS  Google Scholar 

  15. H. J. Carmichael, An Open Systems Approach to Quantum Optics, Berlin, Springer Verlag, 1993.

    MATH  Google Scholar 

  16. C. M. Caves, K. S. Thorne, R. W. P. Drewer, V. D. Sandberg and M. Zimmerman, On the Measurement of a Weak Classical Force Coupled to a Quantum-Mechanical Oscillator, 1. Issues of Principle. Rev. Mod. Phys. 52, 341 (1980).

    Article  ADS  Google Scholar 

  17. M. S. Chapman, T. D. Hammond, A. Lenef, J. Schmiedmayer, R. A. Rubenstein, E. Smith and D. E. Pritchard, Photon Scattering from Atoms in an Atom Interferometer, Phys. Rev. Lett. 75(21), 3783 (1995).

    Article  ADS  Google Scholar 

  18. C. C. Cheng and M. G. Raymer, Long-Range Saturation of Spatial Decoherence in Wave-Field Transport in Random Multiple-Scattering Media, Phys. Rev. Lett. 82 (24), 4807 (1999).

    Article  ADS  Google Scholar 

  19. D. A. R. Dalvit, J. Dziarmaga, W. H. Zurek, Unconditional Pointer States from Conditional Master Equations, Phys. Rev. Lett. 86(3), 373 (2001).

    Article  ADS  Google Scholar 

  20. H. Dekker, Classical and Quantum Mechanics of the Damped Harmonic Oscillator, Phys. Rep. 80, 1 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  21. B. S. DeWitt, Quantum Mechanics and Reality, Phys. Today 23, 30 (1970).

    Article  Google Scholar 

  22. B. S. DeWitt and N. Graham, eds., The Many-Worlds Interpretation of Quantum Mechanics. Princeton: Princeton University Press, 1973.

    Google Scholar 

  23. A. Einstein, B. Podolsky and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 47, 777 (1935).

    Article  MATH  ADS  Google Scholar 

  24. H. Everett III, “Relative State” Formulation of Quantum Mechanics, Rev. Mod. Phys. 29, 454 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  25. R. P. Feynman and F. L.Vernon, The Theory of a General Quantum System Interacting with a Linear Dissipative System, Ann. Phys. 24, 118 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  26. J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo and J. E. Lukens, Quantum Superposition of Distinct Macroscopic States, Nature 406(6791), 43 (2000).

    Article  ADS  Google Scholar 

  27. C. A. Fuchs and A. Peres, Quantum Theory Needs No “Interpretation”, Phys. Today 53(3), 70 (2000).

    Article  Google Scholar 

  28. M. R. Gallis, Emergence of Classicality via Decoherence Described by Lindblad Operators, Phys. Rev. A 53(2), 655 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Gell-Mann and J. B. Hartle, Quantum Mechanics in the Light of Quantum Cosmology, In Complexity, Entropy, and the Physics of Information. p. 425. Edited by W. H. Zurek. Redwood City: Addison-Wesley, 1990.

    Google Scholar 

  30. R. B. Griffiths, Consistent Histories and the Interpretation of Quantum Mechanics, J. Stat. Phys. 36, 219 (1984).

    Article  MATH  ADS  Google Scholar 

  31. F. Haake and D. F. Walls, In Quantum Optics IV. Edited by J. D. Harvey, and D. F. Walls. Berlin: Springer Verlag, 1986.

    Google Scholar 

  32. S. Habib, K. Shizume and W. H. Zurek, Decoherence, Chaos, and the Correspondence Principle, Phys. Rev. Lett. 80(20), 4361 (1998).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. S. Haroche, Entanglement, Mesoscopic Superpositions and Decoherence Studies with Atoms and Photons in a Cavity, Physica Scripta T76, 159 (1998).

    Article  ADS  Google Scholar 

  34. J. B. Hartle, The Quantum Mechanics of Cosmology. In Quantum Cosmology and Baby Universes, Proceedings of the 1989 Jerusalem Winter School. Edited by S. Coleman, J. B. Hartle, T. Piran, and S. Weinberg. Singapore: World Scientific, 1991.

    Google Scholar 

  35. B. L. Hu, J. P. Paz and Y. Zhang, Quantum Brownian Motion in a General Environment: Exact Master Equation with Nonlocal Dissipation and Colored Noise, Phys. Rev. D 45, 2843 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  36. E. Joos and H. D. Zeh, The Emergence of Classical Properties Through Interaction with the Environment. Z., Phys. B 59 223 (1985).

    Article  ADS  Google Scholar 

  37. Z. P. Karkuszewski, J. Zakrzewski and W. H. Zurek, Breakdown of Correspondence in Chaotic Systems: Ehrenfest Versus Localization Times, Phys. Rev. A 65(4), 042113 (2002).

    Article  ADS  Google Scholar 

  38. D. A. Kokorowski, A. D. Cronin, T. D. Roberts and D. E. Pritchard, From Single-to Multiple-Photon Decoherence in an Atom Interferometer, Phys. Rev. Lett. 86(11), 2191 (2001).

    Article  ADS  Google Scholar 

  39. R. Landauer, Information is Physical, Phys. Today 44(5), 23 (1991).

    Article  ADS  Google Scholar 

  40. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg and W. Zwerger, Dynamics of the Dissipative System, Rev. Mod. Phys. 59, 1 (1987).

    Article  ADS  Google Scholar 

  41. G. J. Milburn and C. A. Holmes, Dissipative Quantum and Classical Liouville Mechanics of the Unharmonic Oscillator, Phys. Rev. Lett. 56, 2237 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  42. P. A. Miller and S. Sarkar, Signatures of Chaos in the Entanglement of Two Coupled Quantum Kicked Tops, Phys. Rev. E 60, 1542 (1999).

    Article  ADS  Google Scholar 

  43. C. Monroe, D. M. Meekhof, B. E. King and D. J. Wineland, A “Schrödinger Cat” Superposition State of an Atom, Science 272(5265), 1131 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  44. D. Monteoliva and J. P. Paz, Decoherence and the Rate of Entropy Production in Chaotic Quantum Systems, Phys. Rev. Lett. 85(16), 3373 (2000).

    Article  ADS  Google Scholar 

  45. J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal and S. Lloyd, Josephson Persistent-Current Qubit, Science 285(5430), 1036 (1999).

    Article  Google Scholar 

  46. C. J.Myatt, B. E. King, Q. A. Turchette, C. A. Sackett, D. Kielpinski, W. M. Itano, et al, Decoherence of Quantum Superpositions Through Coupling to Engineered Reservoirs, Nature 403, 269 (2000).

    Article  ADS  Google Scholar 

  47. H. Ollivier and W. H. Zurek, Quantum Discord: A Measure of the Quantumness of Correlations, Phys. Rev. Lett. 88(1), 017901 (2002).

    Article  ADS  Google Scholar 

  48. R. Omnés, From Hilbert Space to Common Sense, Ann. Phys. 201, 354 (1990).

    Article  ADS  Google Scholar 

  49. —, Consistent Interpretation of Quantum Mechanics, Rev. Mod. Phys 64, 339 (1992).

    Article  ADS  Google Scholar 

  50. A. K. Pattanayak, Lyapunov Exponents Entropy Production and Decoherence, Phys. Rev. Lett. 83(22), 4526 (1999).

    Article  ADS  Google Scholar 

  51. J. P. Paz and W. H. Zurek, Environment-Induced Decoherence, Classicality, and Consistency of Quantum Histories, Phys. Rev. D 48(6), 2728 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  52. —, Quantum Limit of Decoherence: Environment Induced Superselection of Energy Eigenstates, Phys. Rev. Lett. 82(26), 5181 (1999).

    Article  ADS  Google Scholar 

  53. —, In Coherent Atomic Matter Waves, Les Houches Lectures, Edited by R. Kaiser, C. Westbrook, and F. Davids. Vol. 72, p. 533. Berlin: Springer, 2001.

    Chapter  Google Scholar 

  54. J. P. Paz, S. Habib and W. H. Zurek, Reduction of the Wave Packet: Preferred Observable and Decoherence Time Scale, Phys. Rev. D 47, 488 (1993).

    Article  ADS  Google Scholar 

  55. T. Pfau, S. Splater, Ch. Kurtsiefer, C. R. Ekstrom and J. Mlynek, Loss of Spatial Coherence by a Single Spontaneous Emission, Phys. Rev. Lett. 73(9), 1223 (1994).

    Article  ADS  Google Scholar 

  56. M. O. Scully, B. G. Englert and J. Schwinger, Spin Coherence and Humpty-Dumpty. III. The Effects of Observation, Phys. Rev. A 40, 1775 (1989).

    Article  ADS  Google Scholar 

  57. M. C. Teich and B. E. A. Saleh, Squeezed and Antibunched Light, Phys. Today 43(6), 26 (1990).

    Article  Google Scholar 

  58. C. D. Tesche, Schrödinger’s Cat: A Realization in Superconducting Devices, Ann. N. Y. Acad. Sci. 480, 36 (1986).

    Article  ADS  Google Scholar 

  59. Q. A. Turchette, C. J. Myatt, B. E. King, C. A. Sackett, D. Kielpinski, W. M. Itano, et al, Decoherence and Decay of Motional Quantum States of a Trapped Atom Coupled to Engineered Reservoirs, Phys. Rev. A 62, 053807 (2000).

    Article  ADS  Google Scholar 

  60. W. G. Unruh and W. H. Zurek, Reduction of a Wave Packet in Quantum Brownian Motion, Phys. Rev. D. 40, 1071 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  61. J. Von Neumann, Mathematische Grundlagen der Quanten Mechanik. Berlin: Springer-Verlag, English translation by R. T. Beyer. 1955. Mathematical Foundations of Quantum Mechanics. Princeton: Princeton University Press, 1932.

    Google Scholar 

  62. J. A. Wheeler, Assessment of Everett’s “Relative State” Formulation of Quantum Theory, Rev. Mod. Phys. 29, 463 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  63. —, Information, Physics, Quantum: The Search for Links, In Complexity, Entropy, and the Physics of Information. p. 3. Edited by W. H. Zurek. Redwood City: Addison-Wesley, 1991.

    Google Scholar 

  64. J. A. Wheeler and W. H. Zurek, eds., Quantum Theory and Measurement, Princeton: Princeton University Press, 1983.

    Google Scholar 

  65. E. P. Wigner, On the Quantum Correction for Thermodynamic Equilibrium, Phys. Rev. 40, 749 (1932).

    Article  MATH  ADS  Google Scholar 

  66. —, Remarks on the Mind-Body Question, In The Scientist Speculates, p. 284. Edited by I. J. Good. London: Heineman, 1961.

    Google Scholar 

  67. —, The Problem of Measurement, Am. J. Phys. 3, 615 (1963).

    MathSciNet  Google Scholar 

  68. —, In Quantum Optics, Experimental Gravitation, and the Measurement Theory, Edited by P. Meystre, and M. O. Scully. p. 43. New York: Plenum Press, 1983.

    Google Scholar 

  69. H. D. Zeh, On the Interpretation of Measurement in Quantum Theory, Found. Phys. 1, 69 (1970).

    Article  ADS  Google Scholar 

  70. W. H. Zurek, Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse?, Phys. Rev. D 24, 1516 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  71. —, Environment-Induced Superselection Rules, Phys. Rev. D 26, 1862 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  72. —, Reduction of the Wave Packet: How Long Does It Take? In Frontiers of Nonequilibrium Statistical Physics, Edited by P. Meystre, and M. O. Scully. New York: Plenum, 1984.

    Google Scholar 

  73. —, Decoherence and the Transition From Quantum to Classical, Phys. Today 44(10), 36 (1991).

    Article  Google Scholar 

  74. —, Preferred States, Predictability, Classicality, and the Environment-Induced Decoherence, Prog. Theor. Phys. 89(2), 281 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  75. —, Decoherence, Chaos, Quantum-Classical Correspondence, and the Algorithmic Arrow of Time, Physica Scripta T76, 186 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  76. —, Einselection and Decoherence from an Information Theory Perspective, Ann. Phys. (Leipzig) 9(11–12), 855 (2000).

    Article  MathSciNet  Google Scholar 

  77. —, Decoherence, Einselection, and the Quantum Origins of the Classical, (2001a), http://eprints.lanl.gov. quant-ph/0105127.

    Google Scholar 

  78. —, Sub-Planck Structure in Phase Space and its Relevance for Quantum Decoherence, Nature 412, 712 (2001b).

    Article  ADS  Google Scholar 

  79. W. H. Zurek and J. P. Paz, Decoherence, Chaos, and the Second Law, Phys. Rev. Lett. 72(16), 2508 (1994).

    Article  ADS  Google Scholar 

  80. —, Quantum Chaos: A Decoherent Definition, Physica D 83(1–3), 300 (1995).

    Article  MATH  Google Scholar 

  81. W. H. Zurek, S. Habib and J. P. Paz, Coherent States via Decoherence, Phys. Rev. Lett. 70(9), 1187 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Zurek, W.H. (2006). Decoherence and the Transition from Quantum to Classical — Revisited. In: Duplantier, B., Raimond, JM., Rivasseau, V. (eds) Quantum Decoherence. Progress in Mathematical Physics, vol 48. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7808-0_1

Download citation

Publish with us

Policies and ethics